Do you want to publish a course? Click here

TeV Gamma-Ray Astronomy in the new Millennium

56   0   0.0 ( 0 )
 Added by Frank Krennrich
 Publication date 2001
  fields Physics
and research's language is English




Ask ChatGPT about the research

The field of TeV gamma-ray astronomy is reviewed with emphasis on its relation to the origin of cosmic rays. The discovery of TeV photons from supernova remnants and active galaxies has provided the first direct observational link between specific astrophysical objects and particle production at the TeV scale. TeV gamma-ray observations constrain the high end of the electromagnetic spectrum, a regime most sensitive for testing particle acceleration and emission models. TeV telescopes have made important contributions to the understanding of blazars and supernova remnants, however, it will take the next generation atmospheric Cherenkov telescopes and satellite-based gamma-ray detectors to unravel the mystery of hadronic cosmic-ray sources. A short review of TeV observations is followed by a discussion of the capabilities and scientific potential of the next generation ground-based atmospheric Cherenkov telescopes.



rate research

Read More

134 - Jamie Holder 2012
The field of TeV gamma-ray astronomy has produced many exciting results over the last decade. Both the source catalogue, and the range of astrophysical questions which can be addressed, continue to expand. This article presents a topical review of the field, with a focus on the observational results of the imaging atmospheric Cherenkov telescope arrays. The results encompass pulsars and their nebulae, supernova remnants, gamma-ray binary systems, star forming regions and starburst and active galaxies.
The High Energy Stereoscopic System (H.E.S.S.) is one of the currently operating Imaging Atmospheric Cherenkov Telescopes. H.E.S.S. operates in the broad energy range from a few tens of GeV to more than 50 TeV reaching its best sensitivity around 1 TeV. In this contribution, we present an analysis technique, which is optimised for the detection at the highest energies accessible to H.E.S.S. and aimed to improve the sensitivity above 10 TeV. It includes the employment of improved event direction reconstruction and gamma-hadron separation. For the first time, also extensive air showers with event offsets up to 4.5$^{circ}$ from the camera centre are considered in the analysis, thereby increasing the effective Field-of-View of H.E.S.S. from 5$^{circ}$ to 9$^{circ}$. Key performance parameters of the new high-energy analysis are presented and its applicability demonstrated for representative hard-spectrum sources in the Milky Way.
This is a report on the findings of the gamma ray burst working group for the white paper on the status and future of TeV gamma-ray astronomy. The white paper is an APS commissioned document, and the overall version has also been released and can be found on astro-ph. This detailed section of the white paper discusses the status of past and current attempts to observe gamma ray bursts at GeV-TeV energies. We concentrate on the potential of future ground-based gamma-ray experiments to observe the highest energy emission ever recorded for GRBs, particularly for those that are nearby and have high Lorentz factors in the GRB jet. It is clear that major advances are possible and that the detection of very high energy emission would have strong implications for GRB models, as well as cosmic ray origin.
192 - Stefan Funk 2012
Gamma-ray studies are an essential tool in our search for the origin of cosmic rays. Instruments like the Fermi-LAT, H.E.S.S., MAGIC and VERITAS have revolutionized our understanding of the high energy Universe. This paper describes the status of the very rich field of gamma-ray astrophysics that contains a wealth of data on Galactic and extragalactic particle accelerators. It is the write-up of a rapporteur talk given at the 32nd ICRC in Beijing, China in which new results were presented with an emphasis on the cosmic-ray related studies of the Universe.
We describe the AGILE gamma-ray astronomy satellite which has recently been selected as the first Small Scientific Mission of the Italian Space Agency. With a launch in 2002, AGILE will provide a unique tool for high-energy astrophysics in the 30 MeV - 50 GeV range before GLAST. Despite the much smaller weight and dimensions, the scientific performances of AGILE are comparable to those of EGRET.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا