No Arabic abstract
We formulate the concept of non-linear and stochastic galaxy biasing in the framework of halo occupation statistics. Using two-point statistics in projection, we define the galaxy bias function, b_g(r_p), and the galaxy-dark matter cross-correlation function, R_{gm}(r_p), where r_p is the projected distance. We use the analytical halo model to predict how the scale dependence of b_g and R_{gm}, over the range 0.1 Mpc/h < r_p < 30 Mpc/h, depends on the non-linearity and stochasticity in halo occupation models. In particular we quantify the effect due to the presence of central galaxies, the assumption for the radial distribution of satellite galaxies, the richness of the halo, and the Poisson character of the probability to have a certain number of satellite galaxies in a halo of a certain mass. Overall, brighter galaxies reveal a stronger scale dependence, and out to a larger radius. In real-space, we find that galaxy bias becomes scale independent, with R_{gm} = 1, for radii r > 1 - 5 Mpc/h, depending on luminosity. However, galaxy bias is scale-dependent out to much larger radii when one uses the projected quantities defined in this paper. These projected bias functions have the advantage that they are more easily accessible observationally and that their scale dependence carries a wealth of information regarding the properties of galaxy biasing. To observationally constrain the parameters of the halo occupation statistics and to unveil the origin of galaxy biasing we propose the use of the bias function Gamma_{gm}(r_p)=b_g(r_p)/R_{gm}(r_p). This function is obtained via a combination of weak gravitational lensing and galaxy clustering, and it can be measured using existing and forthcoming imaging and spectroscopic galaxy surveys.
We compare predictions for galaxy-galaxy lensing profiles and clustering from the Henriques et al. (2015) public version of the Munich semi-analytical model of galaxy formation (SAM) and the IllustrisTNG suite, primarily TNG300, with observations from KiDS+GAMA and SDSS-DR7 using four different selection functions for the lenses (stellar mass, stellar mass and group membership, stellar mass and isolation criteria, stellar mass and colour). We find that this version of the SAM does not agree well with the current data for stellar mass-only lenses with $M_ast > 10^{11},M_odot$. By decreasing the merger time for satellite galaxies as well as reducing the radio-mode AGN accretion efficiency in the SAM, we obtain better agreement, both for the lensing and the clustering, at the high mass end. We show that the new model is consistent with the signals for central galaxies presented in Velliscig et al. (2017). Turning to the hydrodynamical simulation, TNG300 produces good lensing predictions, both for stellar mass-only ($chi^2 = 1.81$ compared to $chi^2 = 7.79$ for the SAM), and locally brightest galaxies samples ($chi^2 = 3.80$ compared to $chi^2 = 5.01$). With added dust corrections to the colours it matches the SDSS clustering signal well for red low mass galaxies. We find that both the SAMs and TNG300 predict $sim 50,%$ excessive lensing signals for intermediate mass red galaxies with $10.2 < log_{10} M_ast [ M_odot ] < 11.2$ at $r approx 0.6,h^{-1},mathrm{Mpc}$, which require further theoretical development.
We present a new method to measure the redshift-dependent galaxy bias by combining information from the galaxy density field and the weak lensing field. This method is based on Amara et al. (2012), where they use the galaxy density field to construct a bias-weighted convergence field kg. The main difference between Amara et al. (2012) and our new implementation is that here we present another way to measure galaxy bias using tomography instead of bias parameterizations. The correlation between kg and the true lensing field k allows us to measure galaxy bias using different zero-lag correlations, such as <kgk>/<kk> or <kgkg>/<kgk>. Our method measures the linear bias factor on linear scales under the assumption of no stochasticity between galaxies and matter. We use the MICE simulation to measure the linear galaxy bias for a flux-limited sample (i < 22.5) in tomographic redshift bins using this method. This paper is the first that studies the accuracy and systematic uncertainties associated with the implementation of the method, and the regime where it is consistent with the linear galaxy bias defined by projected 2-point correlation functions (2PCF). We find that our method is consistent with linear bias at the percent level for scales larger than 30 arcmin, while nonlinearities appear at smaller scales. This measurement is a good complement to other measurements of bias, since it does not depend strongly on sigma8 as the 2PCF measurements. We apply this method to the Dark Energy Survey Science Verification data in a follow-up paper.
We use weak gravitational lensing to analyse the dark matter halos around satellite galaxies in galaxy groups in the CFHTLenS dataset. This dataset is derived from the CFHTLS-Wide survey, and encompasses 154 sq. deg of high-quality shape data. Using the photometric redshifts, we divide the sample of lens galaxies with stellar masses in the range 10^9 Msun to 10^10.5 Msun into those likely to lie in high-density environments (HDE) and those likely to lie in low-density environments (LDE). Through comparison with galaxy catalogues extracted from the Millennium Simulation, we show that the sample of HDE galaxies should primarily (~61%) consist of satellite galaxies in groups, while the sample of LDE galaxies should consist of mostly (~87%) non-satellite (field and central) galaxies. Comparing the lensing signals around samples of HDE and LDE galaxies matched in stellar mass, the lensing signal around HDE galaxies clearly shows a positive contribution from their host groups on their lensing signals at radii of ~500--1000 kpc, the typical separation between satellites and group centres. More importantly, the subhalos of HDE galaxies are less massive than those around LDE galaxies by a factor 0.65 +/- 0.12, significant at the 2.9 sigma level. A natural explanation is that the halos of satellite galaxies are stripped through tidal effects in the group environment. Our results are consistent with a typical tidal truncation radius of ~40 kpc.
In this review, I discuss the use of galaxy-galaxy weak lensing measurements to study the masses of dark matter halos in which galaxies reside. After summarizing how weak gravitational lensing measurements can be interpreted in terms of halo mass, I review measurements that were used to derive the relationship between optical galaxy mass tracers, such as stellar mass or luminosity, and dark matter halo mass. Measurements of galaxy-galaxy lensing from the past decade have led to increasingly tight constraints on the connection between dark matter halo mass and optical mass tracers, including both the mean relationships between these quantities and the intrinsic scatter between them. I also review some of the factors that can complicate analysis, such as the choice of modeling procedure, and choices made when dividing up samples of lens galaxies.
We constrain the average halo ellipticity of ~2 600 galaxy groups from the Galaxy And Mass Assembly (GAMA) survey, using the weak gravitational lensing signal measured from the overlapping Kilo Degree Survey (KiDS). To do so, we quantify the azimuthal dependence of the stacked lensing signal around seven different proxies for the orientation of the dark matter distribution, as it is a priori unknown which one traces the orientation best. On small scales, the major axis of the brightest group/cluster member (BCG) provides the best proxy, leading to a clear detection of an anisotropic signal. In order to relate that to a halo ellipticity, we have to adopt a model density profile. We derive new expressions for the quadrupole moments of the shear field given an elliptical model surface mass density profile. Modeling the signal with an elliptical Navarro-Frenk-White (NFW) profile on scales < 250 kpc, which roughly corresponds to half the virial radius, and assuming that the BCG is perfectly aligned with the dark matter, we find an average halo ellipticity of e_h=0.38 +/- 0.12. This agrees well with results from cold-dark-matter-only simulations, which typically report values of e_h ~ 0.3. On larger scales, the lensing signal around the BCGs does not trace the dark matter distribution well, and the distribution of group satellites provides a better proxy for the halos orientation instead, leading to a 3--4 sigma detection of a non-zero halo ellipticity at scales between 250 kpc and 750 kpc. Our results suggest that the distribution of stars enclosed within a certain radius forms a good proxy for the orientation of the dark matter within that radius, which has also been observed in hydrodynamical simulations.