Do you want to publish a course? Click here

New Insights into SNR Evolution Revealed by the Discovery of Recombining Plasmas

353   0   0.0 ( 0 )
 Added by Hiroya Yamaguchi
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the discovery of recombining plasmas in three supernova remnants (SNRs) with the Suzaku X-ray astronomy satellite. During SNRs evolution, the expanding supernova ejecta and the ambient matter are compressed and heated by the reverse and forward shocks to form an X-ray emitting hot plasma. Since ionization proceeds slowly compared to shock heating, most young or middle-aged SNRs have ionizing (underionized) plasmas. Owing to high sensitivity of Suzaku, however, we have detected radiative recombination continua (RRCs) from the SNRs IC 443, W49B, and G359.1-0.5. The presence of the strong RRC is the definitive evidence that the plasma is recombining (overionized). As a possible origin of the overionization, an interaction between the ejecta and dense circumstellar matter is proposed; the highly ionized gas was made at the initial phase of the SNR evolution in dense regions, and subsequent rapid adiabatic expansion caused sudden cooling of the electrons. The analysis on the full X-ray band spectrum of IC 443, which is newly presented in this paper, provides a consistent picture with this scenario. We also comment on the implications from the fact that all the SNRs having recombining plasmas are correlated with the mixed-morphology class.



rate research

Read More

We survey our understanding of classical novae: non-terminal, thermonuclear eruptions on the surfaces of white dwarfs in binary systems. The recent and unexpected discovery of GeV gamma-rays from Galactic novae has highlighted the complexity of novae and their value as laboratories for studying shocks and particle acceleration. We review half a century of nova literature through this new lens, and conclude: --The basics of the thermonuclear runaway theory of novae are confirmed by observations. The white dwarf sustains surface nuclear burning for some time after runaway, and until recently, it was commonly believed that radiation from this nuclear burning solely determines the novas bolometric luminosity. --The processes by which novae eject material from the binary system remain poorly understood. Mass loss from novae is complex (sometimes fluctuating in rate, velocity, and morphology) and often prolonged in time over weeks, months, or years. --The complexity of the mass ejection leads to gamma-ray producing shocks internal to the nova ejecta. When gamma-rays are detected (around optical maximum), the shocks are deeply embedded and the surrounding gas is very dense. --Observations of correlated optical and gamma-ray light curves confirm that the shocks are radiative and contribute significantly to the bolometric luminosity of novae. Novae are therefore the closest and most common interaction-powered transients.
We present an X-ray study of the GeV gamma-ray supernova remnant (SNR) HB 21 with Suzaku. HB 21 is interacting with molecular clouds and the faintest in the GeV band among known GeV SNRs. We discovered strong radiative recombination continua of Si and S from the center of the remnant, which provide the direct evidence of a recombining plasma (RP). The total emission can be explained with the RP and ionizing plasma components. The electron temperature and recombination timescale of the RP component were estimated as 0.17 (0.15-0.18) keV and 3.2 (2.0-4.8) $times$ 10$^{11}$ s cm$^{-3}$, respectively. The estimated age of the RP (RP age; $sim$ 170 kyr) is the longest among known recombining GeV SNRs, because of very low density of electrons ($sim$ 0.05 cm$^{-3}$). We have examined dependencies of GeV spectral indices on each of RP ages and SNR diameters for nine recombining GeV SNRs. Both showed possible positive correlations, indicating that both the parameters can be good indicators of properties of accelerated protons, for instance, degree of escape from the SNR shocks. A possible scenario for a process of proton escape is introduced; interaction with molecular clouds makes weaker magnetic turbulence and cosmic-ray protons escape, simultaneously cooling down the thermal electrons and generate an RP.
We present the results of a study aimed at exploring the evolution towards energy equipartition in star cluster models with different initial degrees of anisotropy in the velocity distribution. Our study reveals a number of novel aspects of the cluster dynamics and shows that the rate of evolution towards energy equipartition (1) depends on the initial degree of radial velocity anisotropy -- it is more rapid for more radially anisotropic systems; and (2) differs for the radial and the tangential components of the velocity dispersion. (3) The outermost regions of the initially isotropic system evolve towards a state of `inverted energy equipartition in which high-mass stars have a larger velocity dispersion than low-mass stars -- this inversion originates from the mass-dependence of the tangential velocity dispersion whereas the radial velocity dispersion shows no anomaly. Our results add new fundamental elements to the theoretical framework needed to interpret the wealth of recent and upcoming observational studies of stellar kinematics in globular clusters, and shed further light on the link between the clusters internal kinematics, their formation and evolutionary history.
Recent X-ray study of middle-aged supernova remnants (SNRs) reveals strong radiative recombination continua (RRCs) associated with overionized plasmas, of which the origin still remains uncertain. We report our discovery of an RRC in the middle-aged SNR 3C 391. If the X-ray spectrum is fitted with a two-temperature plasma model in collisional ionization equilibrium (CIE), residuals of Si XIV Ly alpha line at 2.006 keV, S XVI Ly alpha line at 2.623 keV and the edge of RRC of Si XIII at 2.666 keV are found. The X-ray spectrum is better described by a composite model consisting of a CIE plasma and a recombining plasma (RP). The abundance pattern suggests that the RP is associated to the ejecta from a core-collapse supernova with a progenitor star of 15 solar mass. There is no significant difference of the recombining plasma parameters between the southeast region and the northwest region surrounded by dense molecular clouds. We also find a hint of Fe I K alpha line at 6.4 keV (~2.4 sigma detection) from the southeast region of the SNR.
SDSS J015957.64+003310.5 is an X-ray selected, $z=0.31$ AGN from the Stripe 82X survey that transitioned from a Type 1 quasar to a Type 1.9 AGN between 2000 and 2010. This is the most distant AGN, and first quasar, yet observed to have undergone such a dramatic change. We re-observed the source with the double spectrograph on the Palomar 5m telescope in July 2014 and found that the spectrum is unchanged since 2010. From fitting the optical spectra, we find that the AGN flux dropped by a factor of 6 between 2000 and 2010 while the broad H$alpha$ emission faded and broadened. Serendipitous X-ray observations caught the source in both the bright and dim state, showing a similar 2-10 keV flux diminution as the optical while lacking signatures of obscuration. The optical and X-ray changes coincide with $g$-band magnitude variations over multiple epochs of Stripe 82 observations. We demonstrate that variable absorption, as might be expected from the simplest AGN unification paradigm, does not explain the observed photometric or spectral properties. We interpret the changing state of J0159+0033 to be caused by dimming of the AGN continuum, reducing the supply of ionizing photons available to excite gas in the immediate vicinity around the black hole. J0159+0033 provides insight into the intermittency of black hole growth in quasars, as well as an unprecedented opportunity to study quasar physics (in the bright state) and the host galaxy (in the dim state), which has been impossible to do in a single sources until now.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا