Do you want to publish a course? Click here

Discovery of recombining plasma from the faintest GeV SNR HB 21 and a possible scenario of the cosmic ray escaping from SNR shocks

54   0   0.0 ( 0 )
 Added by Hiromasa Suzuki
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present an X-ray study of the GeV gamma-ray supernova remnant (SNR) HB 21 with Suzaku. HB 21 is interacting with molecular clouds and the faintest in the GeV band among known GeV SNRs. We discovered strong radiative recombination continua of Si and S from the center of the remnant, which provide the direct evidence of a recombining plasma (RP). The total emission can be explained with the RP and ionizing plasma components. The electron temperature and recombination timescale of the RP component were estimated as 0.17 (0.15-0.18) keV and 3.2 (2.0-4.8) $times$ 10$^{11}$ s cm$^{-3}$, respectively. The estimated age of the RP (RP age; $sim$ 170 kyr) is the longest among known recombining GeV SNRs, because of very low density of electrons ($sim$ 0.05 cm$^{-3}$). We have examined dependencies of GeV spectral indices on each of RP ages and SNR diameters for nine recombining GeV SNRs. Both showed possible positive correlations, indicating that both the parameters can be good indicators of properties of accelerated protons, for instance, degree of escape from the SNR shocks. A possible scenario for a process of proton escape is introduced; interaction with molecular clouds makes weaker magnetic turbulence and cosmic-ray protons escape, simultaneously cooling down the thermal electrons and generate an RP.



rate research

Read More

We report the detection of GeV gamma-ray emission from the molecular cloud complex that surrounds the supernova remnant (SNR) W44 using the Large Area Telescope (LAT) onboard Fermi. While the previously reported gamma-ray emission from SNR W44 is likely to arise from the dense radio-emitting filaments within the remnant, the gamma-ray emission that appears to come from the surrounding molecular cloud complex can be ascribed to the cosmic rays (CRs) that have escaped from W44. The non-detection of synchrotron radio emission associated with the molecular cloud complex suggests the decay of neutral pi mesons produced in hadronic collisions as the gamma-ray emission mechanism. The total kinetic energy channeled into the escaping CRs is estimated to be (0.3--3)x10^{50} erg, in broad agreement with the conjecture that SNRs are the main sources of Galactic CRs.
Supernova remnants (SNRs) are believed to be the main sources of Galactic cosmic rays. Molecular clouds associated with SNRs can produce gamma-ray emission through the interaction of accelerated particles with the concentrated gas. The middle aged SNR W28, for its associated system of dense molecular clouds, provides an excellent opportunity to test this hypothesis. We present the AGILE/GRID observations of SNR W28, and compare them with observations at other wavelengths (TeV and 12CO J=1-->0 molecular line emission). The gamma-ray flux detected by AGILE from the dominant source associated with W28 is (14 +- 5) 10^-8 ph cm^-2 s^-1 for E > 400 MeV. This source is positionally well correlated with the TeV emission observed by the HESS telescope. The local variations of the GeV to TeV flux ratio suggest a difference between the CR spectra of the north-west and south molecular cloud complexes. A model based on a hadronic-induced interaction and diffusion with two molecular clouds at different distances from the W28 shell can explain both the morphological and spectral features observed by AGILE in the MeV-GeV energy range and by the HESS telescope in the TeV energy range. The combined set of AGILE and H.E.S.S. data strongly support a hadronic model for the gamma-ray production in W28.
365 - V. A. Acciari , E. Aliu , T. Arlen 2010
We report the discovery of very high energy gamma-ray emission from the direction of the SNR G54.1+0.3 using the VERITAS ground-based gamma-ray observatory. The TeV signal has an overall significance of 6.8$sigma$ and appears point-like given the 5$^{arcminute}$ resolution of the instrument. The integral flux above 1 TeV is 2.5% of the Crab Nebula flux and significant emission is measured between 250 GeV and 4 TeV, well described by a power-law energy spectrum dN/dE $sim$ E$^{-Gamma}$ with a photon index $Gamma= 2.39pm0.23_{stat}pm0.30_{sys}$. We find no evidence of time variability among observations spanning almost two years. Based on the location, the morphology, the measured spectrum, the lack of variability and a comparison with similar systems previously detected in the TeV band, the most likely counterpart of this new VHE gamma-ray source is the PWN in the SNR G54.1+0.3. The measured X-ray to VHE gamma-ray luminosity ratio is the lowest among all the nebulae supposedly driven by young rotation-powered pulsars, which could indicate a particle-dominated PWN.
We report the discovery of recombining plasmas in three supernova remnants (SNRs) with the Suzaku X-ray astronomy satellite. During SNRs evolution, the expanding supernova ejecta and the ambient matter are compressed and heated by the reverse and forward shocks to form an X-ray emitting hot plasma. Since ionization proceeds slowly compared to shock heating, most young or middle-aged SNRs have ionizing (underionized) plasmas. Owing to high sensitivity of Suzaku, however, we have detected radiative recombination continua (RRCs) from the SNRs IC 443, W49B, and G359.1-0.5. The presence of the strong RRC is the definitive evidence that the plasma is recombining (overionized). As a possible origin of the overionization, an interaction between the ejecta and dense circumstellar matter is proposed; the highly ionized gas was made at the initial phase of the SNR evolution in dense regions, and subsequent rapid adiabatic expansion caused sudden cooling of the electrons. The analysis on the full X-ray band spectrum of IC 443, which is newly presented in this paper, provides a consistent picture with this scenario. We also comment on the implications from the fact that all the SNRs having recombining plasmas are correlated with the mixed-morphology class.
Galactic cosmic ray (CRs) sources, classically proposed to be Supernova Remnants (SNRs), must meet the energetic particle content required by direct measurements of high energy CRs. Indirect gamma-ray measurements of SNRs with the Fermi Large Area Telescope (LAT) have now shown directly that at least three SNRs accelerate protons. With the first Fermi LAT SNR Catalog, we have systematically characterized the GeV gamma-rays emitted by 279 SNRs known primarily from radio surveys. We present these sources in a multiwavelength context, including studies of correlations between GeV and radio size, flux, and index, TeV index, and age and environment tracers, in order to better understand effects of evolution and environment on the GeV emission. We show that previously sufficient models of SNRs GeV emission no longer adequately describe the data. To address the question of CR origins, we also examine the SNRs maximal CR contribution assuming the GeV emission arises solely from proton interactions. Improved breadth and quality of multiwavelength data, including distances and local densities, and more, higher resolution gamma-ray data with correspondingly improved Galactic diffuse models will strengthen this constraint.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا