Do you want to publish a course? Click here

Optimizing the Earth-LISA rendez-vous

206   0   0.0 ( 0 )
 Added by Fabrizio De Marchi
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a general survey of heliocentric LISA orbits, hoping it might help in the exercise of rescoping the mission. We try to semi-analytically optimize the orbital parameters in order to minimize the disturbances coming from the Earth-LISA interaction. In a set of numerical simulations we include nonautonomous perturbations and provide an estimate of Doppler shift and breathing as a function of the trailing angle.



rate research

Read More

The early inspiral of massive stellar-mass black-hole binaries merging in LIGOs sensitivity band will be detectable at low frequencies by the upcoming space mission LISA. LISA will predict, with years of forewarning, the time and frequency with which binaries will be observed by LIGO. We will, therefore, find ourselves in the position of knowing that a binary is about to merge, with the unprecedented opportunity to optimize ground-based operations to increase their scientific payoff. We apply this idea to detections of multiple ringdown modes, or black-hole spectroscopy. Narrowband tunings can boost the detectors sensitivity at frequencies corresponding to the first subdominant ringdown mode and largely improve our prospects to experimentally test the Kerr nature of astrophysical black holes. We define a new consistency parameter between the different modes, called $delta {rm GR}$, and show that, in terms of this measure, optimized configurations have the potential to double the effectiveness of black-hole spectroscopy when compared to standard broadband setups.
We calculate the effect of the Earth-Moon (EM) system on the free-fall motion of LISA test masses. We show that the periodic gravitational pulling of the EM system induces a resonance with fundamental frequency 1 yr^-1 and a series of periodic perturbations with frequencies equal to integer harmonics of the synodic month (9.92 10^-7 Hz). We then evaluate the effects of these perturbations (up to the 6th harmonics) on the relative motions between each test masses couple, finding that they range between 3mm and 10pm for the 2nd and 6th harmonic, respectively. If we take the LISA sensitivity curve, as extrapolated down to 10^-6 Hz, we obtain that a few harmonics of the EM system can be detected in the Doppler data collected by the LISA space mission. This suggests that the EM system gravitational near field could provide an absolute calibration for the LISA sensitivity at very low frequencies.
The LTP (LISA Testflight Package), to be flown aboard the ESA / NASA LISA Pathfinder mission, aims to demonstrate drag-free control for LISA test masses with acceleration noise below 30 fm/s^2/Hz^1/2 from 1-30 mHz. This paper describes the LTP measurement of random, position independent forces acting on the test masses. In addition to putting an overall upper limit for all source of random force noise, LTP will measure the conversion of several key disturbances into acceleration noise and thus allow a more detailed characterization of the drag-free performance to be expected for LISA.
The Laser Interferometer Space Antenna (LISA) will detect thousands of gravitational wave sources. Many of these sources will be overlapping in the sense that their signals will have a non-zero cross-correlation. Such overlaps lead to source confusion, which adversely affects how well we can extract information about the individual sources. Here we study how source confusion impacts parameter estimation for galactic compact binaries, with emphasis on the effects of the number of overlaping sources, the time of observation, the gravitational wave frequencies of the sources, and the degree of the signal correlations. Our main findings are that the parameter resolution decays exponentially with the number of overlapping sources, and super-exponentially with the degree of cross-correlation. We also find that an extended mission lifetime is key to disentangling the source confusion as the parameter resolution for overlapping sources improves much faster than the usual square root of the observation time.
111 - James Ira Thorpe 2009
The Laser Interferometer Space Antenna (LISA) will observe gravitational radiation in the milliHertz band by measuring picometer-level fluctuations in the distance between drag-free proof masses over baselines of approximately five million kilometers. The measurement over each baseline will be divided into three parts: two short-arm measurements between the proof masses and a fiducial point on their respective spacecraft, and a long-arm measurement between fiducial points on separate spacecraft. This work focuses on the technical challenges associated with these long-arm measurements and the techniques that have been developed to overcome them.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا