Do you want to publish a course? Click here

Optimizing LIGO with LISA forewarnings to improve black-hole spectroscopy

158   0   0.0 ( 0 )
 Added by Davide Gerosa
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The early inspiral of massive stellar-mass black-hole binaries merging in LIGOs sensitivity band will be detectable at low frequencies by the upcoming space mission LISA. LISA will predict, with years of forewarning, the time and frequency with which binaries will be observed by LIGO. We will, therefore, find ourselves in the position of knowing that a binary is about to merge, with the unprecedented opportunity to optimize ground-based operations to increase their scientific payoff. We apply this idea to detections of multiple ringdown modes, or black-hole spectroscopy. Narrowband tunings can boost the detectors sensitivity at frequencies corresponding to the first subdominant ringdown mode and largely improve our prospects to experimentally test the Kerr nature of astrophysical black holes. We define a new consistency parameter between the different modes, called $delta {rm GR}$, and show that, in terms of this measure, optimized configurations have the potential to double the effectiveness of black-hole spectroscopy when compared to standard broadband setups.



rate research

Read More

The Laser Interferometer Space Antenna (LISA) will be able to detect massive black hole mergers throughout the visible Universe. These observations will provide unique information about black hole formation and growth, and the role black holes play in galaxy evolution. Here we develop several key building blocks for detecting and characterizing black hole binary mergers with LISA, including fast heterodyned likelihood evaluations, and efficient stochastic search techniques.
We present a thorough observational investigation of the heuristic quantised ringdown model presented in Foit & Kleban (2019). This model is based on the Bekenstein-Mukhanov conjecture, stating that the area of a black hole horizon is an integer multiple of the Planck area $l_P^2$ multiplied by a phenomenological constant, $alpha$, which can be viewed as an additional black hole intrinsic parameter. Our approach is based on a time-domain analysis of the gravitational wave signals produced by the ringdown phase of binary black hole mergers detected by the LIGO and Virgo collaboration. Employing a full Bayesian formalism and taking into account the complete correlation structure among the black hole parameters, we show that the value of $alpha$ cannot be constrained using only GW150914, in contrast to what was suggested in Foit & Kleban (2019). We proceed to repeat the same analysis on the new gravitational wave events detected by the LIGO and Virgo Collaboration up to 1 October 2019, obtaining a combined-event measure equal to $alpha = 15.6^{+20.5}_{-13.3}$ and a combined log odds ratio of $0.1 pm 0.6$, implying that current data are not informative enough to favour or discard this model against general relativity. We then show that using a population of $mathcal{O}(20)$ GW150914-like simulated events - detected by the current infrastructure of ground-based detectors at their design sensitivity - it is possible to confidently falsify the quantised model or prove its validity, in which case probing $alpha$ at the few % level. Finally we classify the stealth biases that may show up in a population study.
We consider the observation of stellar-mass black holes binaries with the Laser Interferometer Space Antenna (LISA). Preliminary results based on Fisher information matrix analyses have suggested that gravitational waves from those sources could be very sensitive to possible deviations from the theory of general relativity and from the strong equivalence principle during the low-frequency binary inspiral. We perform a full Markov Chain Monte Carlo Bayesian analysis to quantify the sensitivity of these signals to two phenomenological modifications of general relativity, namely a putative gravitational dipole emission and a non-zero mass for the graviton, properly accounting for the detectors response. Moreover, we consider a scenario where those sources could be observed also with Earth-based detectors, which should measure the coalescence time with precision better than $1 {rm ms}$. This constraint on the coalescence time further improves the bounds that we can set on those phenomenological deviations from general relativity. We show that tests of dipole radiation and the gravitons mass should improve respectively by seven and half an order(s) of magnitude over current bounds. Finally, we discuss under which conditions one may claim the detection of a modification to general relativity.
Ultralight bosons can induce superradiant instabilities in spinning black holes, tapping their rotational energy to trigger the growth of a bosonic condensate. Possible observational imprints of these boson clouds include (i) direct detection of the nearly monochromatic (resolvable or stochastic) gravitational waves emitted by the condensate, and (ii) statistically significant evidence for the formation of holes at large spins in the spin versus mass plane (sometimes also referred to as Regge plane) of astrophysical black holes. In this work, we focus on the prospects of LISA and LIGO detecting or constraining scalars with mass in the range $m_sin [10^{-19},,10^{-15}]$ eV and $m_sin [10^{-14},,10^{-11}]$ eV, respectively. Using astrophysical models of black-hole populations calibrated to observations and black-hole perturbation theory calculations of the gravitational emission, we find that, in optimistic scenarios, LIGO could observe a stochastic background of gravitational radiation in the range $m_sin [2times 10^{-13}, 10^{-12}]$ eV, and up to $10^4$ resolvable events in a $4$-year search if $m_ssim 3times 10^{-13},{rm eV}$. LISA could observe a stochastic background for boson masses in the range $m_sin [5times 10^{-19}, 5times 10^{-16}]$, and up to $sim 10^3$ resolvable events in a $4$-year search if $m_ssim 10^{-17},{rm eV}$. LISA could further measure spins for black-hole binaries with component masses in the range $[10^3, 10^7]~M_odot$, which is not probed by traditional spin-measurement techniques. A statistical analysis of the spin distribution of these binaries could either rule out scalar fields in the mass range $sim [4 times 10^{-18}, 10^{-14}]$ eV, or measure $m_s$ with ten percent accuracy if light scalars in the mass range $sim [10^{-17}, 10^{-13}]$ eV exist.
On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-wave Observatory (LIGO) simultaneously observed the binary black hole merger GW150914. We report the results of a matched-filter search using relativistic models of compact-object binaries that recovered GW150914 as the most significant event during the coincident observations between the two LIGO detectors from September 12 to October 20, 2015. GW150914 was observed with a matched filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203 000 years, equivalent to a significance greater than 5.1 {sigma}.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا