Do you want to publish a course? Click here

The Quantified NTO Analysis for the Electronic Excitations of Molecular Many-Body Systems

116   0   0.0 ( 0 )
 Added by Jian-Hao Li
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We show that the origin of electronic transitions of molecular many-body systems can be revealed by a quantified natural transition orbitals (QNTO) analysis and the electronic excitations of the total system can be mapped onto a standard orbitals set of a reference system. We further illustrate QNTO on molecular systems by studying the origin of electronic transitions of DNA moiety, thymine and thymidine. This QNTO analysis also allows us to assess the performance of various functionals used in time-dependent density functional response theory.



rate research

Read More

We systematically investigate the possible complex transition origin of electronic excitations of giant molecular systems by using the recently proposed QNTO analysis [J.-H. Li, J.-D. Chai, G. Y. Guo and M. Hayashi, Chem. Phys. Lett., 2011, 514, 362.] combined with long-range corrected TDDFT calculations. Thymine (Thy) related excitations of biomolecule B-DNA are then studied as examples, where the model systems have been constructed extracting from the perfect or a X-ray crystal (PDB code 3BSE) B-DNA structure with at least one Thy included. In the first part, we consider the systems composed of a core molecular segment (e.g. Thy, di-Thy) and a surrounding physical/chemical environment of interest (e.g. backbone, adjacent stacking nucleobases) and examine how the excitation properties of the core vary in response to the environment. We find that the orbitals contributed from DNA backbone and surrounding nucleobases often participate in a transition of Thy-related excitations affecting their composition, absorption energy, and oscillator strength. In the second part, we take into account geometrically induced variation of the excitation properties of various B-DNA segments, e.g. di-Thy, dTpdT etc., obtained from different sources (ideal and 3BSE). It is found that the transition origin of several Thy-related excitations of these segments is sensitive to slight conformational variations, suggesting that DNA with thermal motions in cells may from time to time exhibit very different photo-induced physical and/or chemical processes.
We present a novel hybrid quantum/classical (QM/MM) approach to the calculation of charged excitations in molecular solids based on the many-body Greens function $GW$ formalism. Molecules described at the $GW$ level are embedded into the crystalline environment modeled with an accurate classical polarizable scheme. This allows the calculation of electron addition and removal energies in the bulk and at crystal surfaces where charged excitations are probed in photoelectron experiments. By considering the paradigmatic case of pentacene and perfluoropentacene crystals, we discuss the different contributions from intermolecular interactions to electronic energy levels, distinguishing between polarization, which is accounted for combining quantum and classical polarizabilities, and crystal field effects, that can impact energy levels by up to $pm0.6$ eV. After introducing band dispersion, we achieve quantitative agreement (within 0.2 eV) on the ionization potential and electron affinity measured at pentacene and perfluoropentacene crystal surfaces characterized by standing molecules.
We propose a simple many-body based screening mixing strategy to considerably enhance the performance of the Bethe-Salpeter (BS) approach for prediction of excitation energies of molecular systems. This strategy enables us to nearly reproduce results of highly correlated equation of motion coupled cluster singles and doubles (EOM-CCSD) through optimal use of cancellation effects.
We describe a method for computing near-exact energies for correlated systems with large Hilbert spaces. The method efficiently identifies the most important basis states (Slater determinants) and performs a variational calculation in the subspace spanned by these determinants. A semistochastic approach is then used to add a perturbative correction to the variational energy to compute the total energy. The size of the variational space is progressively increased until the total energy converges to within the desired tolerance. We demonstrate the power of the method by computing a near-exact potential energy curve (PEC) for a very challenging molecule -- the chromium dimer.
We present ab-initio calculations of the excited state properties of liquid water in the framework of Many-Body Greens function formalism. Snapshots taken from molecular dynamics simulations are used as input geometries to calculate electronic and optical spectra, and the results are averaged over the different configurations. The optical absorption spectra with the inclusion of excitonic effects are calculated by solving the Bethe-Salpeter equation. These calculations are made possible by exploiting the insensitivity of screening effects to a particular configuration. The resulting spectra are strongly modified by many-body effects, both concerning peak energies and lineshapes, and are in good agreement with experiments.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا