Do you want to publish a course? Click here

The proton momentum distribution in strongly H-bonded phases of water; a critical test of electrostatic models

125   0   0.0 ( 0 )
 Added by Christian Burnham
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

Water is often viewed as a collection of monomers interacting electrostatically with each other. We compare the water proton momentum distributions from recent neutron scattering data with those calculated from two electronic structure based models. We find that below 500 K the electrostatic models are not able to even qualitatively account for the sizable vibrational zero-point contribution to the enthalpy of vaporization. This discrepancy is evidence that the change in the proton well upon solvation cannot be entirely explained by electrostatic effects alone.



rate research

Read More

One of the many peculiar properties of water is the pronounced deviation of the proton momentum distribution from Maxwell-Boltzmann behaviour. This deviation from the classical limit is a manifestation of the quantum mechanical nature of protons. Its extent, which can be probed directly by Deep Inelastic Neutron Scattering (DINS) experiments, gives important insight on the potential of mean force felt by H atoms. The determination of the full distribution of particle momenta, however, is a real tour de force for both experiments and theory, which has led to unresolved discrepancies between the two. In this Letter we present comprehensive, fully-converged momentum distributions for water at several thermodynamic state points, focusing on the components that cannot be described in terms of a scalar contribution to the quantum kinetic energy, and providing a benchmark that can serve as a reference for future simulations and experiments. In doing so, we also introduce a number of technical developments that simplify and accelerate greatly the calculation of momentum distributions by means of atomistic simulations.
An inhomogeneous electric field is used to study the deflection of a supersonic beam of water molecules. The deflection profiles show strong broadening accompanied by a small net displacement towards higher electric fields. The profiles are in excellent agreement with a calculation of rotational Stark shifts. The molecular rotational temperature being the only adjustable parameter, beam deflection is found to offer an accurate and practical means of determining this quantity. A pair of especially strongly responding rotational sublevels, adding up to approx 25% of the total beam intensity, are readily separated by deflection, making them potentially useful for further electrostatic manipulation.
Hydrogen-bonded mixtures with varying concentration are a complicated networked system that demands a detection technique with both time and frequency resolutions. Hydrogen-bonded pyridine-water mixtures are studied by a time-frequency resolved coherent Raman spectroscopic technique. Femtosecond broadband dual-pulse excitation and delayed picosecond probing provide sub-picosecond time resolution in the mixtures temporal evolution. For different pyridine concentrations in water, asymmetric blue versus red shifts (relative to pure pyridine spectral peaks) were observed by simultaneously recording both the coherent anti-Stokes and Stokes Raman spectra. Macroscopic coherence dephasing times for the perturbed pyridine ring modes were observed in ranges of 0.9 - 2.6 picoseconds for both 18 and 10 cm-1 broad probe pulses. For high pyridine concentrations in water, an additional spectral broadening (or escalated dephasing) for a triangular ring vibrational mode was observed. This can be understood as a result of ultrafast collective emissions from coherently excited ensemble of pairs of pyridine molecules bound to water molecules.
The dielectric spectrum of liquid water, $10^{4} - 10^{11}$ Hz, is interpreted in terms of diffusion of charges, formed as a result of self-ionization of H$_{2}$O molecules. This approach explains the Debye relaxation and the dc conductivity as two manifestations of this diffusion. The Debye relaxation is due to the charge diffusion with a fast recombination rate, $1/tau_{2}$, while the dc conductivity is a manifestation of the diffusion with a much slower recombination rate, $1/tau_{1}$. Applying a simple model based on Brownian-like diffusion, we find $tau_{2} simeq 10^{-11}$ s and $tau_{1} simeq 10^{-6}$ s, and the concentrations of the charge carriers, involved in each of the two processes, $N_{2} simeq 5 times 10^{26}$ m$^{-3}$ and $N_{1} simeq 10^{14}$ m$^{-3}$. Further, we relate $N_{2}$ and $N_{1}$ to the total concentration of H$_{3}$O$^{+}$--OH$^{-}$ pairs and to the pH index, respectively, and find the lifetime of a single water molecule, $tau_{0} simeq 10^{-9}$ s. Finally, we show that the high permittivity of water results mostly from flickering of separated charges, rather than from reorientations of intact molecular dipoles.
83 - Wei Gan , Ran-ran Feng , 2019
In a recent letter (PRL,121,246101,2018), Sun et al. reported that combined MD simulation and sum frequency generation vibrational spectroscopy (SFG-VS) measurements led to conclusions of a broad and exponentially decaying orientational distribution, and the presence of the free O-H group pointing down to the bulk at the air/water interface. In this comment, we show that their main conclusions are based on questionable interpretation of the SFG-VS data presented in the letter [1], and are also contrary to the established data analysis and interpretations in the literature [2-5].
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا