Do you want to publish a course? Click here

The Anisotropy of the Proton Momentum Distribution in Water

103   0   0.0 ( 0 )
 Added by Venkat Kapil
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

One of the many peculiar properties of water is the pronounced deviation of the proton momentum distribution from Maxwell-Boltzmann behaviour. This deviation from the classical limit is a manifestation of the quantum mechanical nature of protons. Its extent, which can be probed directly by Deep Inelastic Neutron Scattering (DINS) experiments, gives important insight on the potential of mean force felt by H atoms. The determination of the full distribution of particle momenta, however, is a real tour de force for both experiments and theory, which has led to unresolved discrepancies between the two. In this Letter we present comprehensive, fully-converged momentum distributions for water at several thermodynamic state points, focusing on the components that cannot be described in terms of a scalar contribution to the quantum kinetic energy, and providing a benchmark that can serve as a reference for future simulations and experiments. In doing so, we also introduce a number of technical developments that simplify and accelerate greatly the calculation of momentum distributions by means of atomistic simulations.



rate research

Read More

Water is often viewed as a collection of monomers interacting electrostatically with each other. We compare the water proton momentum distributions from recent neutron scattering data with those calculated from two electronic structure based models. We find that below 500 K the electrostatic models are not able to even qualitatively account for the sizable vibrational zero-point contribution to the enthalpy of vaporization. This discrepancy is evidence that the change in the proton well upon solvation cannot be entirely explained by electrostatic effects alone.
In this work, second-generation Car-Parrinello-based QM/MM molecular dynamics simulations of small nanoparticles of NbP, NbAs, TaAs and 1T-TaS$_2$ in water are presented. The first three materials are topological Weyl semimetals, which were recently discovered to be active catalysts in photocatalytic water splitting. The aim of this research was to correlate potential differences in the water structure in the vicinity of the nanoparticle surface with the photocatalytic activity of these materials in light induced proton reduction. The results presented herein allow to explain the catalytic activity of these Weyl semimetals: the most active material, NbP, exhibits a particularly low water coordination near the surface of the nanoparticle, whereas for 1T-TaS$_2$, with the lowest catalytic activity, the water structure at the surface is most ordered. In addition, the photocatalytic activity of several organic and metalorganic photosensitizers in the hydrogen evolution reaction was experimentally investigated with NbP as proton reduction catalyst. Unexpectedly, the charge of the photosensitizer plays a decisive role for the photocatalytic performance.
The dielectric spectrum of liquid water, $10^{4} - 10^{11}$ Hz, is interpreted in terms of diffusion of charges, formed as a result of self-ionization of H$_{2}$O molecules. This approach explains the Debye relaxation and the dc conductivity as two manifestations of this diffusion. The Debye relaxation is due to the charge diffusion with a fast recombination rate, $1/tau_{2}$, while the dc conductivity is a manifestation of the diffusion with a much slower recombination rate, $1/tau_{1}$. Applying a simple model based on Brownian-like diffusion, we find $tau_{2} simeq 10^{-11}$ s and $tau_{1} simeq 10^{-6}$ s, and the concentrations of the charge carriers, involved in each of the two processes, $N_{2} simeq 5 times 10^{26}$ m$^{-3}$ and $N_{1} simeq 10^{14}$ m$^{-3}$. Further, we relate $N_{2}$ and $N_{1}$ to the total concentration of H$_{3}$O$^{+}$--OH$^{-}$ pairs and to the pH index, respectively, and find the lifetime of a single water molecule, $tau_{0} simeq 10^{-9}$ s. Finally, we show that the high permittivity of water results mostly from flickering of separated charges, rather than from reorientations of intact molecular dipoles.
150 - A. Yazdani , P. Jeffrey 2011
This paper explores a variety of strategies for understanding the formation, structure, efficiency and vulnerability of water distribution networks. Water supply systems are studied as spatially organized networks for which the practical applications of abstract evaluation methods are critically evaluated. Empirical data from benchmark networks are used to study the interplay between network structure and operational efficiency, reliability and robustness. Structural measurements are undertaken to quantify properties such as redundancy and optimal-connectivity, herein proposed as constraints in network design optimization problems. The role of the supply-demand structure towards system efficiency is studied and an assessment of the vulnerability to failures based on the disconnection of nodes from the source(s) is undertaken. The absence of conventional degree-based hubs (observed through uncorrelated non-heterogeneous sparse topologies) prompts an alternative approach to studying structural vulnerability based on the identification of network cut-sets and optimal connectivity invariants. A discussion on the scope, limitations and possible future directions of this research is provided.
We carry out extensive direct path integral Monte Carlo (PIMC) simulations of the uniform electron gas (UEG) at finite temperature for different values of the spin-polarization $xi$. This allows us to unambiguously quantify the impact of spin-effects on the momentum distribution function $n(mathbf{k})$ and related properties. We find that interesting physical effects like the interaction-induced increase in the occupation of the zero-momentum state $n(mathbf{0})$ substantially depend on $xi$. Our results further advance the current understanding of the UEG as a fundamental model system, and are of practical relevance for the description of transport properties of warm dense matter in an external magnetic field. All PIMC results are freely available online and can be used as a benchmark for the development of new methods and applications.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا