Do you want to publish a course? Click here

Is the charge determined via shot noise measurements unique?

210   0   0.0 ( 0 )
 Added by Merav Dolev -
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

Charged excitations in the fractional quantum Hall effect are known to carry fractional charges, as theoretically predicted and experimentally verified. Here we report on the dependence of the tunneling quasiparticle charge, as determined via highly sensitive shot noise measurements, on the measurement conditions, in the odd denominators states v=1/3 and v=7/3 and in the even denominator state v=5/2. In particular, for very weak backscattering probability and sufficiently small excitation energies (temperature and applied voltage), tunneling charges across a constriction were found to be significantly higher than the theoretically predicted fundamental quasiparticle charges.



rate research

Read More

As is well known, the fluctuations from a stable stationary nonequilibrium state are described by a linearized nonhomogeneous Boltzmann-Langevin equation. The stationary state itself may be described by a nonlinear Boltzmann equation. The ways of its linearization sometimes seem to be not unique. We argue that there is actually a unique way to obtain a linear equation for the fluctuations. In the present paper we treat as an example an analytical theory of nonequilibrium shot noise in a diffusive conductor under the space charge limited regime. Our approach is compared with that of Schomerus, Mishchenko and Beenakker [Phys. Rev. B 60, 5839 (1999)]. We find some difference between the present theory and the approach of their paper and discuss a possible origin of the difference. We believe that it is related to the fundamentals of the theory of fluctuation phenomena in a nonequilibrium electron gas.
110 - F. E. Camino 2004
We have found experimentally that the noise of ballistic electron transport in a superconductor/semiconductor/superconductor junction is enhanced relative to the value given by the general relation, S_V=2eIR^2coth(eV/2kT), for two voltage regions in which this expression reduces to its thermal and shot noise limits. The noise enhancement is explained by the presence of large charge quanta, with effective charge q*=(1+2Delta/eV)e, that generate a noise spectrum S_V=2q*IR^2, as predicted in Phys. Rev. Lett. 76, 3814 (1996). These charge quanta result from multiple Andreev reflections at each junction interface, which are also responsible for the subharmonic gap structure observed in the voltage dependence of the junctions conductance.
150 - V.S. Khrapai , D.V. Shovkun 2010
We study a shot noise of a wide channel gated high-frequency transistor at temperature of 4.2K near pinch-off. In this regime, a transition from the metallic to the insulating state is expected to occur, accompanied by the increase of the partition noise. The dependence of the noise spectral density on current is found to be slightly nonlinear. At low currents, the differential Fano factor is enhanced compared to the universal value 1/3 for metallic diffusive conductors. We explain this result by the effect of thermal fluctuations in a nonlinear regime near pinch-off, without calling for the enhanced partition noise.
We have operated a quantum point contact (QPC) charge detector in a radio frequency (RF) mode that allows fast charge detection in a bandwidth of tens of megahertz. We find that the charge sensitivity of the RF-QPC is limited not by the noise of a secondary amplifier, but by non-equilibrium noise f the QPC itself. We have performed frequency-resolved measurements of the noise within a 10 MHz bandwidth around our carrier wave. When averaged over our bandwidth, we find that the noise is in good agreement with the theory of photon-assisted shot noise. Our measurements also reveal strong frequency dependence of the noise, asymmetry with respect to the carrier wave, the appearance of sharp local maxima that are correlated with mechanical degrees of freedom in the sample, and noise suppression indicative of many-body physics near the 0.7 structure.
236 - D. E. Feldman , M. Heiblum 2017
A fractional quasiparticle charge is a manifestation of strong interactions in the fractional quantum Hall effect. Nevertheless, shot noise of quasiparticles is well described by a formula, derived for noninteracting charges. We explain the success of that formula by proving that in the limits of strong and weak backscattering it holds irrespectively of microscopic details in weakly and strongly interacting systems alike. The derivation relies only on principles of statistical mechanics. We also derive an approximate model-independent formula for shot noise in the regime of intermediate backscattering. The equation is numerically close to the standard `noninteracting fitting formula but suggests a different physical interpretation of the experimental results. We verify our theoretical predictions with a shot noise experiment at the filling factor $3/5$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا