No Arabic abstract
We report the observation of large magnetocaloric effect near room temperature in antipervoskite SnCMn3. The maximal magnetic entropy change at the first-order ferrimagnetic-paramagnetic transition temperature (TC 279 K) is about 80.69mJ/cm3 K and 133mJ/cm3 K under the magnetic field of 20 kOe and 48 kOe, respectively. These values are close to those of typical magnetocaloric materials. The large magnetocaloric effect is associated with the sharp change of lattice, resistivity and magnetization in the vicinity of TC. Through the measurements of Seebeck coefficient and normal Hall effect, the title system is found to undergo a reconstruction of electronic structure at TC. Considering its low-cost and innocuous raw materials, Mn-based antiperovskite compounds are suggested to be appropriate for pursuing new materials with larger magnetocaloric effect.
The magnetic and magnetocaloric properties of polycrystalline La0.70(Ca0.30-xSrx)MnO3:Ag 10% manganite have been investigated. All the compositions are crystallized in single phase orthorhombic Pbnm space group. Both, the Insulator-Metal transition temperature (TIM) and Curie temperature (Tc) are observed at 298 K for x = 0.10 composition. Though both TIM and Tc are nearly unchanged with Ag addition, the MR is slightly improved. The MR at 300 K is found to be as large as 31% with magnetic field change of 1Tesla, whereas it reaches up to 49% at magnetic field of 3Tesla for La0.70Ca0.20Sr0.10MnO3:Ag0.10 sample. The maximum entropy change (DeltaSMmax) is 7.6 J.Kg-1.K-1 upon the magnetic field change of 5Tesla, near its Tc (300.5 K). The La0.70Ca0.20Sr0.10MnO3:Ag0.10 sample having good MR (31%1Tesla, 49%3Tesla) and reasonable change in magnetic entropy (7.6 J.Kg-1.K-1, 5 Tesla) at 300 K can be a potential magnetic refrigerant material at ambient temperatures.
The temperature dependences of magnetization, electrical transport, and thermal transport properties of antiperovskite compound SnCMn3 have been investigated systematically. A positive magnetoresistance (~11%) is observed around the ferrimagnetic-paramagnetic transition (TC ~ 280 K) in the field of 50 kOe, which can be attributed to the field-induced magnetic phase transition. The abnormalities of resistivity, Seebeck coefficient, normal Hall effect and thermal conductivity near TC are suggested to be associated with an abrupt reconstruction of electronic structure. Further, our results indicate an essential interaction among lattice, spin and charge degrees of freedom around TC. Such an interaction among various degrees of freedom associated with sudden phase transition is suggested to be characteristic of Mn-based antiperovskite compounds.
Mutual control of the electricity and magnetism in terms of magnetic (H) and electric (E) fields, the magnetoelectric (ME) effect, offers versatile low power-consumption alternatives to current data storage, logic gate, and spintronic devices. Despite its importance, E-field control over magnetization (M) with significant magnitude was observed only at low temperatures. Here we have successfully stabilized a simultaneously ferrimagnetic and ferroelectric phase in a Y-type hexaferrite single crystal up to T=450K and demonstrated the reversal of large non-volatile M by E field close to room temperature. Manipulation of the magnetic domains by E field is directly visualized at room temperature by using magnetic force microscopy. The present achievement provides an important step towards the application of bulk ME multiferroics.
The implementation and control of room temperature ferromagnetism (RTFM) by adding magnetic atoms to a semiconductors lattice has been one of the most important problems in solid state state physics in the last decade. Herein we report for the first time, to our knowledge, on the mechanism that allows RTFM to be tuned by the inclusion of emph{non-magnetic} aluminum in nickel ferrite. This material, NiFe$_{2-x}$Al$_x$O$_4$ (x=0, 0.5, 1.5), has already shown much promise for magnetic semiconductor technologies, and we are able to add to its versatility technological viability with our results. The site occupancies and valencies of Fe atoms (Fe$^{3+}$ T$_d$, Fe$^{2+}$ O$_h$, and Fe$^{3+}$ O$_h$) can be methodically controlled by including aluminum. Using the fact that aluminum strongly prefers a 3+ octahedral environment, we can selectively fill iron sites with aluminum atoms, and hence specifically tune the magnetic contributions for each of the iron sites, and therefore the bulk material as well. Interestingly, the influence of the aluminum is weak on the electronic structure (supplemental material), allowing one to retain the desirable electronic properties while achieving desirable magnetic properties.
Based on the two-variable polynomial model of magnetization, magnetic entropy change of bilayered manganites with $327$-structure and its scaling behaviour with respect to applied magnetic fields are investigated. Its found that the Curie temperature, which is defined as the point at which the partial derivative of magnetization with respect to temperature reaches its maximum, is different from the temperature of peak magnetic entropy change. Thus a mean-field model can not apply to this kind of manganites. In contrast to what has been found in manganites with the $113$-structure, the scaling behaviour at the Curie temperature in manganites with $327$-structure is much different from that at the temperature of peak magnetic entropy. Its also found that the temperature dependence of the scaling exponent under weak fields is distinct from that under strong fields.This difference is attributed to an crossover from one-step transition under weak fields to two-step transition under strong fields.