Do you want to publish a course? Click here

Localized closed timelike curves can perfectly distinguish quantum states

168   0   0.0 ( 0 )
 Added by Todd Brun
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We show that qubits traveling along closed timelike curves are a resource that a party can exploit to distinguish perfectly any set of quantum states. As a result, an adversary with access to closed timelike curves can break any prepare-and-measure quantum key distribution protocol. Our result also implies that a party with access to closed timelike curves can violate the Holevo bound.



rate research

Read More

114 - T.C. Ralph , C.R. Myers 2010
Recently, the quantum information processing power of closed timelike curves have been discussed. Because the most widely accepted model for quantum closed timelike curve interactions contains ambiguities, different authors have been able to reach radically different conclusions as to the power of such interactions. By tracing the information flow through such systems we are able to derive equivalent circuits with unique solutions, thus allowing an objective decision between the alternatives to be made. We conclude that closed timelike curves, if they exist and are well described by these simple models, would be a powerful resource for quantum information processing.
Closed timelike curves are among the most controversial features of modern physics. As legitimate solutions to Einsteins field equations, they allow for time travel, which instinctively seems paradoxical. However, in the quantum regime these paradoxes can be resolved leaving closed timelike curves consistent with relativity. The study of these systems therefore provides valuable insight into non-linearities and the emergence of causal structures in quantum mechanics-essential for any formulation of a quantum theory of gravity. Here we experimentally simulate the non-linear behaviour of a qubit interacting unitarily with an older version of itself, addressing some of the fascinating effects that arise in systems traversing a closed timelike curve. These include perfect discrimination of non-orthogonal states and, most intriguingly, the ability to distinguish nominally equivalent ways of preparing pure quantum states. Finally, we examine the dependence of these effects on the initial qubit state, the form of the unitary interaction, and the influence of decoherence.
In general relativity, closed timelike curves can break causality with remarkable and unsettling consequences. At the classical level, they induce causal paradoxes disturbing enough to motivate conjectures that explicitly prevent their existence. At the quantum level, resolving such paradoxes induce radical benefits - from cloning unknown quantum states to solving problems intractable to quantum computers. Instinctively, one expects these benefits to vanish if causality is respected. Here we show that in harnessing entanglement, we can efficiently solve NP-complete problems and clone arbitrary quantum states - even when all time-travelling systems are completely isolated from the past. Thus, the many defining benefits of closed timelike curves can still be harnessed, even when causality is preserved. Our results unveil the subtle interplay between entanglement and general relativity, and significantly improve the potential of probing the radical effects that may exist at the interface between relativity and quantum theory.
In this work, we investigate what kinds of quantum states are feasible to perform perfectly secure secret sharing, and present its necessary and sufficient conditions. We also show that the states are bipartite distillable for all bipartite splits, and hence the states could be distillable into the Greenberger-Horne-Zeilinger state. We finally exhibit a class of secret-sharing states, which have an arbitrarily small amount of bipartite distillable entanglement for a certain split.
110 - Zhongzhu Liu 2011
According to the set theory, we prove that objects moving along closed timelike curves (CTCs) should belong to proper classes, but never to any set. Particles in a set have to change own some properties when they come into a CVC in order to become the objects in a proper class.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا