Do you want to publish a course? Click here

Kahler-Einstein Structures of General Natural Lifted Type on the Cotangent Bundles

120   0   0.0 ( 0 )
 Added by Simona Druta
 Publication date 2008
  fields
and research's language is English
 Authors S. L. Druta




Ask ChatGPT about the research

We study the conditions under which the cotangent bundle $T^*M$ of a Riemaannian manifold $(M,g)$, endowed with a Kahlerian structure $(G,J)$ of general natural lift type (see cite{Druta1}), is Einstein. We first obtain a general natural Kahler-Einstein structure on the cotangent bundle $T^*M$. In this case, a certain parameter, $lambda$ involved in the condition for $(T^*M,G,J)$ to be a Kahlerian manifold, is expressed as a rational function of the other two, the value of the constant sectional curvature, $c$, of the base manifold $(M,g)$ and the constant $rho$ involved in the condition for the structure of being Einstein. This expression of $lambda$ is just that involved in the condition for the Kahlerian manifold to have constant holomorphic sectional curvature (see cite{Druta2}). In the second case, we obtain a general natural Kahler-Einstein structure only on $T_0M$, the bundle of nonzero cotangent vectors to $M$. For this structure, $lambda$ is expressed as another function of the other two parameters, their derivatives, $c$ and $rho$.



rate research

Read More

163 - S.L. Druta 2008
We study the conditions under which an almost Hermitian structure $(G,J)$ of general natural lift type on the cotangent bundle $T^*M$ of a Riemannian manifold $(M,g)$ is K ahlerian. First, we obtain the algebraic conditions under which the manifold $(T^*M,G,J)$ is almost Hermitian. Next we get the integrability conditions for the almost complex structure $J$, then the conditions under which the associated 2-form is closed. The manifold $(T^*M,G,J)$ is K ahlerian iff it is almost Kahlerian and the almost complex structure $J$ is integrable. It follows that the family of Kahlerian structures of above type on $T^*M$ depends on three essential parameters (one is a certain proportionality factor, the other two are parameters involved in the definition of $J$).
180 - S. L. Druta 2008
We study the conditions under which a Kahlerian structure $(G,J)$ of general natural lift type on the cotangent bundle $T^*M$ of a Riemannian manifold $(M,g)$ has constant holomorphic sectional curvature. We obtain that a certain parameter involved in the condition for $(T^*M,G,J)$ to be a Kahlerian manifold, is expressed as a rational function of the other two, their derivatives, the constant sectional curvature of the base manifold $(M,g)$, and the constant holomorphic sectional curvature of the general natural Kahlerian structure $(G,J)$.
160 - S. L. Druta 2008
We study the conditions under which the tangent bundle $(TM,G)$ of an $n$-dimensional Riemannian manifold $(M,g)$ is conformally flat, where $G$ is a general natural lifted metric of $g$. We prove that the base manifold must have constant sectional curvature and we find some expressions for the natural lifted metric $G$, such that the tangent bundle $(TM,G)$ become conformally flat.
150 - S. Druta 2008
We study some properties of the tangent bundles with metrics of general natural lifted type. We consider a Riemannian manifold $(M,g)$ and we find the conditions under which the Riemannian manifold $(TM,G)$, where $TM$ is the tangent bundle of $M$ and $G$ is the general natural lifted metric of $g$, has constant sectional curvature.
We obtain the natural diagonal almost product and locally product structures on the total space of the cotangent bundle of a Riemannian manifold. We find the Riemannian almost product (locally product) and the (almost) para-Hermitian cotangent bundles of natural diagonal lift type. We prove the characterization theorem for the natural diagonal (almost) para-Kahlerian structures on the total spaces of the cotangent bundle.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا