Do you want to publish a course? Click here

The Sectional Curvature of the Tangent Bundles with General Natural Lifted Metrics

158   0   0.0 ( 0 )
 Added by Simona Druta
 Publication date 2008
  fields
and research's language is English
 Authors S. Druta




Ask ChatGPT about the research

We study some properties of the tangent bundles with metrics of general natural lifted type. We consider a Riemannian manifold $(M,g)$ and we find the conditions under which the Riemannian manifold $(TM,G)$, where $TM$ is the tangent bundle of $M$ and $G$ is the general natural lifted metric of $g$, has constant sectional curvature.



rate research

Read More

168 - S. L. Druta 2008
We study the conditions under which the tangent bundle $(TM,G)$ of an $n$-dimensional Riemannian manifold $(M,g)$ is conformally flat, where $G$ is a general natural lifted metric of $g$. We prove that the base manifold must have constant sectional curvature and we find some expressions for the natural lifted metric $G$, such that the tangent bundle $(TM,G)$ become conformally flat.
184 - S. L. Druta 2008
We study the conditions under which a Kahlerian structure $(G,J)$ of general natural lift type on the cotangent bundle $T^*M$ of a Riemannian manifold $(M,g)$ has constant holomorphic sectional curvature. We obtain that a certain parameter involved in the condition for $(T^*M,G,J)$ to be a Kahlerian manifold, is expressed as a rational function of the other two, their derivatives, the constant sectional curvature of the base manifold $(M,g)$, and the constant holomorphic sectional curvature of the general natural Kahlerian structure $(G,J)$.
127 - S. L. Druta 2008
We study the conditions under which the cotangent bundle $T^*M$ of a Riemaannian manifold $(M,g)$, endowed with a Kahlerian structure $(G,J)$ of general natural lift type (see cite{Druta1}), is Einstein. We first obtain a general natural Kahler-Einstein structure on the cotangent bundle $T^*M$. In this case, a certain parameter, $lambda$ involved in the condition for $(T^*M,G,J)$ to be a Kahlerian manifold, is expressed as a rational function of the other two, the value of the constant sectional curvature, $c$, of the base manifold $(M,g)$ and the constant $rho$ involved in the condition for the structure of being Einstein. This expression of $lambda$ is just that involved in the condition for the Kahlerian manifold to have constant holomorphic sectional curvature (see cite{Druta2}). In the second case, we obtain a general natural Kahler-Einstein structure only on $T_0M$, the bundle of nonzero cotangent vectors to $M$. For this structure, $lambda$ is expressed as another function of the other two parameters, their derivatives, $c$ and $rho$.
167 - Simona-Luiza Druta 2010
We continue the study of the anti-Hermitian structures of general natural lift type on the tangent bundles. We get the conditions under which these structures are in the eight classes obtained by Ganchev and Borisov. We complete the characterization of the general natural anti-Kahlerian structures on the tangent bundles with necessary and sufficient conditions, then we present some results concerning the remaining classes.
95 - R. Albuquerque 2016
We define and study natural $mathrm{SU}(2)$-structures, in the sense of Conti-Salamon, on the total space $cal S$ of the tangent sphere bundle of any given oriented Riemannian 3-manifold $M$. We recur to a fundamental exterior differential system of Riemannian geometry. Essentially, two types of structures arise: the contact-hypo and the non-contact and, for each, we study the conditions for being hypo, nearly-hypo or double-hypo. We discover new double-hypo structures on $S^3times S^2$, of which the well-known Sasaki-Einstein are a particular case. Hyperbolic geometry examples also appear. In the search of the associated metrics, we find a theorem, useful for explicitly determining the metric, which applies to all $mathrm{SU}(2)$-structures in general. Within our application to tangent sphere bundles, we discover a whole new class of metrics specific to 3d-geometry. The evolution equations of Conti-Salamon are considered; leading to a new integrable $mathrm{SU}(3)$-structure on ${cal S}timesmathbb{R}_+$ associated to any flat $M$.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا