Do you want to publish a course? Click here

Hidden gauginos of an unbroken U(1): Cosmological constraints and phenomenological prospects

88   0   0.0 ( 0 )
 Added by Christoph Weniger
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study supersymmetric scenarios where the dark matter is the gaugino of an unbroken hidden U(1) which interacts with the visible world only via a small kinetic mixing with the hypercharge. Strong constraints on the parameter space can be derived from avoiding overclosure of the Universe and from requiring successful Big Bang Nucleosynthesis and structure formation. We find that for typical values of the mixing parameter, scenarios with neutralino NLSP are excluded, while scenarios with slepton NLSP are allowed when the mixing parameter lies in the range chi~O(10^(-13) - 10^(-10)). We also show that if the gravitino is the LSP and the hidden U(1) gaugino the NLSP, the bounds on the reheating temperature from long lived charged MSSM relics can be considerably relaxed and we comment on the signatures of these scenarios at future colliders. Finally, we discuss the case of an anomalously small mixing, chi<<10^(-16), where the neutralino becomes a decaying dark matter candidate, and derive constraints from gamma ray experiments.



rate research

Read More

An extension of the Standard Model by at least one extra U(1) gauge symmetry has been investigated by many authors. In this paper we explore the possibility that this extra U(1) is anomalous. One of the possible signatures of this model could be given by the photons produced in the decays of the NLSP into the LSP.
We propose a hidden gauged $U(1)_H$ $Z$ model to explain deviations from the Standard Model (SM) values in lepton flavor universality known as $R_K$ and $R_D$ anomalies. The $Z$ only interacts with the SM fermions via their mixing with vector-like doublet fermions after the $U(1)_H$ symmetry breaking, which leads to $b to s mumu$ transition through the $Z^{prime}$ at tree level. Moreover, introducing an additional mediator, inert-Higgs doublet, yields $bto c tau u$ process via charged scalar contribution at tree level. Using flavio package, we scrutinize adequate sizes of the relevant Wilson coefficients to these two processes by taking various flavor observables into account. It is found that significant mixing between the vector-like and the second generation leptons is needed for the $R_K$ anomaly. A possible explanation of the $R_D$ anomaly can also be simultaneously addressed in a motivated situation, where a single scalar operator plays a dominant role, by the successful model parameters for the $R_K$ anomaly.
We propose a simple extension of the Standard Model (SM) by adding an extra U(1) symmetry which is hidden from the SM sector. Such a hidden U(1) has not been considered before, and its existence at the TeV scale can be explored at the LHC. This hidden U(1) does not couple directly to the SM particles, and couples only to new SU(2)_L singlet exotic quarks and singlet Higgs bosons, and is broken at the TeV scale. The dominant signals at the high energy hadron colliders are multi lepton and multi b-jet final states with or without missing energy. We calculate the signal rates as well as the corresponding Standard Model background for these final states. A very distinctive signal is 6 high p_T b-jets in the final state with no missing energy. For a wide range of the exotic quarks masses the signals are observable above the background at the LHC.
Motivated by the recent PAMELA and ATIC data, one is led to a scenario with heavy vector-like dark matter in association with a hidden $U(1)_X$ sector below GeV scale. Realizing this idea in the context of gauge mediated supersymmetry breaking (GMSB), a heavy scalar component charged under $U(1)_X$ is found to be a good dark matter candidate which can be searched for direct scattering mediated by the Higgs boson and/or by the hidden gauge boson. The latter turns out to put a stringent bound on the kinetic mixing parameter between $U(1)_X$ and $U(1)_Y$: $theta lesssim 10^{-6}$. For the typical range of model parameters, we find that the decay rates of the ordinary lightest neutralino into hidden gauge boson/gaugino and photon/gravitino are comparable, and the former decay mode leaves displaced vertices of lepton pairs and missing energy with distinctive length scale larger than 20 cm for invariant lepton pair mass below 0.5 GeV. An unsatisfactory aspect of our model is that the Sommerfeld effect cannot raise the galactic dark matter annihilation by more than 60 times for the dark matter mass below TeV.
Embeddings of the standard model in type II string theory typically contain a variety of U(1) gauge factors arising from D-branes in the bulk. In general, there is no reason why only one of these - the one corresponding to weak hypercharge - should be massless. Observations require that standard model particles must be neutral (or have an extremely small charge) under additional massless U(1)s, i.e. the latter have to belong to a so called hidden sector. The exchange of heavy messengers, however, can lead to a kinetic mixing between the hypercharge and the hidden-sector U(1)s, that is testable with near future experiments. This provides a powerful probe of the hidden sectors and, as a consequence, of the string theory realisation itself. In the present paper, we show, using a variety of methods, how the kinetic mixing can be derived from the underlying type II string compactification, involving supersymmetric and nonsupersymmetric configurations of D-branes, both in large volumes and in warped backgrounds with fluxes. We first demonstrate by explicit example that kinetic mixing occurs in a completely supersymmetric set-up where we can use conformal field theory techniques. We then develop a supergravity approach which allows us to examine the phenomenon in more general backgrounds, where we find that kinetic mixing is natural in the context of flux compactifications. We discuss the phenomenological consequences for experiments at the low-energy frontier, searching for signatures of light, sub-electronvolt or even massless hidden-sector U(1) gauge bosons and minicharged particles.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا