Do you want to publish a course? Click here

Determination of Landau Fermi-liquid parameters of strongly interacting fermions by means of a nonlinear scaling transformation

439   0   0.0 ( 0 )
 Added by Chen Jisheng
 Publication date 2009
  fields Physics
and research's language is English
 Authors Ji-sheng Chen




Ask ChatGPT about the research

A nonlinear transformation approach is formulated for the correlated fermions thermodynamics through a medium-scaling effective action. An auxiliary implicit variable-effective chemical potential is introduced to characterize the non-Gaussian fluctuations physics. By incorporating the nonlocal correlation effects, the achieved grand partition function is made of coupled highly nonlinear parametric equations. Analytically, the low temperature expansions for the strongly interacting unitary Fermi gas are performed for the adiabatic compressibility-sound speed and specific heat with the Sommerfeld lemma. The expressions for the Landau Fermi-Liquid parameters $F_0^s$ and $F_1^s$ of the strongly interacting fermion system are obtained. As a universal constant, the effective fermion mass ratio is $m^*/m={10/9}$ at unitarity.



rate research

Read More

The nature of the normal state of an ultracold Fermi gas in the BCS-BEC crossover regime is an intriguing and controversial topic. While the many-body ground state remains a condensate of paired fermions, the normal state must evolve from a Fermi liquid to a Bose gas of molecules as a function of the interaction strength. How this occurs is still largely unknown. We explore this question with measurements of the distribution of single-particle energies and momenta in a nearly homogeneous gas above $T_c$. The data fit well to a function that includes a narrow, positively dispersing peak that corresponds to quasiparticles and an incoherent background that can accommodate broad, asymmetric line shapes. We find that the quasiparticles spectral weight vanishes abruptly as the strength of interactions is modified, which signals the breakdown of a Fermi liquid description. Such a sharp feature is surprising in a crossover.
By calculating correlation functions for the Lieb-Liniger model based on the algebraic Bethe ansatz method, we conduct a finite-size scaling analysis of the eigenstate thermalization hypothesis (ETH) which is considered to be a possible mechanism of thermalization in isolated quantum systems. We find that the ETH in the weak sense holds in the thermodynamic limit even for an integrable system although it does not hold in the strong sense. Based on the result of the finite-size scaling analysis, we compare the contribution of the weak ETH to thermalization with that of yet another thermalization mechanism, the typicality, and show that the former gives only a logarithmic correction to the latter.
We present a self-contained theory for the exact calculation of particle number counting statistics of non-interacting indistinguishable particles in the canonical ensemble. This general framework introduces the concept of auxiliary partition functions, and represents a unification of previous distinct approaches with many known results appearing as direct consequences of the developed mathematical structure. In addition, we introduce a general decomposition of the correlations between occupation numbers in terms of the occupation numbers of individual energy levels, that is valid for both non-degenerate and degenerate spectra. To demonstrate the applicability of the theory in the presence of degeneracy, we compute energy level correlations up to fourth order in a bosonic ring in the presence of a magnetic field.
377 - Hao Xie , Linfeng Zhang , Lei Wang 2021
We present a variational density matrix approach to the thermal properties of interacting fermions in the continuum. The variational density matrix is parametrized by a permutation equivariant many-body unitary transformation together with a discrete probabilistic model. The unitary transformation is implemented as a quantum counterpart of neural canonical transformation, which incorporates correlation effects via a flow of fermion coordinates. As the first application, we study electrons in a two-dimensional quantum dot with an interaction-induced crossover from Fermi liquid to Wigner molecule. The present approach provides accurate results in the low-temperature regime, where conventional quantum Monte Carlo methods face severe difficulties due to the fermion sign problem. The approach is general and flexible for further extensions, thus holds the promise to deliver new physical results on strongly correlated fermions in the context of ultracold quantum gases, condensed matter, and warm dense matter physics.
We have observed phase separation between the superfluid and the normal component in a strongly interacting Fermi gas with imbalanced spin populations. The in situ distribution of the density difference between two trapped spin components is obtained using phase-contrast imaging and 3D image reconstruction. A shell structure is clearly identified where the superfluid region of equal densities is surrounded by a normal gas of unequal densities. The phase transition induces a dramatic change in the density profiles as excess fermions are expelled from the superfluid.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا