Do you want to publish a course? Click here

Realizing the strongly correlated $d$-Mott state in a fermionic cold atom optical lattice

101   0   0.0 ( 0 )
 Added by Michael R. Peterson
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We show that a new state of matter, the d-wave Mott-insulator state (d-Mott state) (introduced recently by [H. Yao, W. F. Tsai, and S. A. Kivelson, Phys. Rev. B 76, 161104 (2007)]), which is characterized by a non-zero expectation value of a local plaquette operator embedded in an insulating state, can be engineered using ultra-cold atomic fermions in two-dimensional double-well optical lattices. We characterize and analyze the parameter regime where the $d$-Mott state is stable. We predict the testable signatures of the state in the time-of-flight measurements.



rate research

Read More

Discontinuous quantum phase transitions and the associated metastability play central roles in diverse areas of physics ranging from ferromagnetism to false vacuum decay in the early universe. Using strongly-interacting ultracold atoms in an optical lattice, we realize a driven many-body system whose quantum phase transition can be tuned from continuous to discontinuous. Resonant shaking of a one-dimensional optical lattice hybridizes the lowest two Bloch bands, driving a novel transition from a Mott insulator to a $pi$-superfluid, i.e., a superfluid state with staggered phase order. For weak shaking amplitudes, this transition is discontinuous (first-order) and the system can remain frozen in a metastable state, whereas for strong shaking, it undergoes a continuous transition toward a $pi$-superfluid. Our observations of this metastability and hysteresis are in good quantitative agreement with numerical simulations and pave the way for exploring the crucial role of quantum fluctuations in discontinuous transitions.
167 - R.S. Markiewicz , A. Bansil 2017
We show how strongly correlated materials could be described within the framework of an excitonic insulator formalism, and delineate the relationship between inter- and intra-band ordering phenomena. Our microscopic model of excitons clarifies the fundamental role of Van-Hove-singularity-nesting in driving both inter- and intra-band ordering transitions, and uncovers an interesting connection with resonating-valence-bond physics.
We propose a novel realization of Kondo physics with ultracold atomic gases. It is based on a Fermi sea of two different hyperfine states of one atom species forming bound states with a different species, which is spatially confined in a trapping potential. We show that different situations displaying Kondo physics can be realized when Feshbach resonances between the species are tuned by a magnetic field and the trapping frequency is varied. We illustrate that a mixture of ${}^{40}$K and ${}^{23}$Na atoms can be used to generate a Kondo correlated state and that momentum resolved radio frequency spectroscopy can provide unambiguous signatures of the formation of Kondo resonances at the Fermi energy. We discuss how tools of atomic physics can be used to investigate open questions for Kondo physics, such as the extension of the Kondo screening cloud.
157 - Igor Lesanovsky 2011
We present an exact solution of an experimentally realizable and strongly interacting one-dimensional spin system which is a limiting case of a quantum Ising model with long range interaction in a transverse and longitudinal field. Pronounced quantum fluctuations lead to a strongly correlated liquid ground state. For open boundary conditions the ground state manifold consists of four degenerate sectors whose quantum numbers are determined by the orientation of the edge spins. Explicit expressions for the entanglement properties, the excitation gap as well as the exact wave functions for a couple of excited states are analytically derived and discussed.
152 - Lei Wang , Xi Dai , Shu Chen 2008
We carry out textit{ab initio} study of ground state phase diagram of spin-1/2 cold fermionic atoms within two-fold degenerate $p$-band of an anisotropic optical lattice. Using the Gutzwiller variational approach, we show that a robust ferromagnetic phase exists for a vast range of band fillings and interacting strengths. The ground state crosses over from spin density wave state to spin-1 Neel state at half filling. Additional harmonic trap will induce spatial separation of varies phases. We also discuss several relevant observable consequences and detection methods. Experimental test of the results reported here may shed some light on the long-standing issue of itinerant ferromagnetism.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا