Do you want to publish a course? Click here

Realizing a Kondo-correlated state with ultracold atoms

180   0   0.0 ( 0 )
 Added by Johannes Bauer
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We propose a novel realization of Kondo physics with ultracold atomic gases. It is based on a Fermi sea of two different hyperfine states of one atom species forming bound states with a different species, which is spatially confined in a trapping potential. We show that different situations displaying Kondo physics can be realized when Feshbach resonances between the species are tuned by a magnetic field and the trapping frequency is varied. We illustrate that a mixture of ${}^{40}$K and ${}^{23}$Na atoms can be used to generate a Kondo correlated state and that momentum resolved radio frequency spectroscopy can provide unambiguous signatures of the formation of Kondo resonances at the Fermi energy. We discuss how tools of atomic physics can be used to investigate open questions for Kondo physics, such as the extension of the Kondo screening cloud.



rate research

Read More

The quantum Rabi model describes the interaction between a two-level quantum system and a single bosonic mode. We propose a method to perform a quantum simulation of the quantum Rabi model introducing a novel implementation of the two-level system, provided by the occupation of Bloch bands in the first Brillouin zone by ultracold atoms in tailored optical lattices. The effective qubit interacts with a quantum harmonic oscillator implemented in an optical dipole trap. Our realistic proposal allows to experimentally investigate the quantum Rabi model for extreme parameter regimes, which are not achievable with natural light-matter interactions. Furthermore, we also identify a generalized version of the quantum Rabi model in a periodic phase space.
We study the single-particle properties of a system formed by ultracold atoms loaded into the manifold of $l=1$ Orbital Angular Momentum (OAM) states of an optical lattice with a diamond chain geometry. Through a series of successive basis rotations, we show that the OAM degree of freedom induces phases in some tunneling amplitudes of the tight-binding model that are equivalent to a net $pi$ flux through the plaquettes and give rise to a topologically non-trivial band structure and protected edge states. In addition, we demonstrate that quantum interferences between the different tunneling processes involved in the dynamics may lead to Aharanov-Bohm caging in the system. All these analytical results are confirmed by exact diagonalization numerical calculations.
Spin exchange between a single-electron charged quantum dot and itinerant electrons leads to an emergence of Kondo correlations. When the quantum dot is driven resonantly by weak laser light, the resulting emission spectrum allows for a direct probe of these correlations. In the opposite limit of vanishing exchange interaction and strong laser drive, the quantum dot exhibits coherent oscillations between the single-spin and optically excited states. Here, we show that the interplay between strong exchange and non-perturbative laser coupling leads to the formation of a new nonequilibrium quantum-correlated state, characterized by the emergence of a laser-induced secondary spin screening cloud, and examine the implications for the emission spectrum.
Topological materials have potential applications for quantum technologies. Non-interacting topological materials, such as e.g., topological insulators and superconductors, are classified by means of fundamental symmetry classes. It is instead only partially understood how interactions affect topological properties. Here, we discuss a model where topology emerges from the quantum interference between single-particle dynamics and global interactions. The system is composed by soft-core bosons that interact via global correlated hopping in a one-dimensional lattice. The onset of quantum interference leads to spontaneous breaking of the lattice translational symmetry, the corresponding phase resembles nontrivial states of the celebrated Su-Schriefer-Heeger model. Like the fermionic Peierls instability, the emerging quantum phase is a topological insulator and is found at half fillings. Originating from quantum interference, this topological phase is found in exact density-matrix renormalization group calculations and is entirely absent in the mean-field approach. We argue that these dynamics can be realized in existing experimental platforms, such as cavity quantum electrodynamics setups, where the topological features can be revealed in the light emitted by the resonator.
Low-dimensional electron systems fabricated from quantum matter have in recent years become available and are being explored with great intensity. This article gives an overview of the fundamental properties of such systems and summarizes the state of the field. We furthermore present and consider the concept of artificial atoms fabricated from quantum materials, anticipating remarkable scientific advances and possibly important applications of this new field of research. The surprising properties of these artificial atoms and of molecules or even of solids assembled from them are presented and discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا