Do you want to publish a course? Click here

Scalable quantum computing with atomic ensembles

153   0   0.0 ( 0 )
 Added by Tom Stace
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

Atomic ensembles, comprising clouds of atoms addressed by laser fields, provide an attractive system for both the storage of quantum information, and the coherent conversion of quantum information between atomic and optical degrees of freedom. In a landmark paper, Duan et al. (DLCZ) [1] showed that atomic ensembles could be used as nodes of a quantum repeater network capable of sharing pairwise quantum entanglement between systems separated by arbitrarily large distances. In recent years, a number of promising experiments have demonstrated key aspects of this proposal [2-7]. Here, we describe a scheme for full scale quantum computing with atomic ensembles. Our scheme uses similar methods to those already demonstrated experimentally, and yet has information processing capabilities far beyond those of a quantum repeater.



rate research

Read More

We propose a novel scheme of solid state realization of a quantum computer based on single spin enhancement mode quantum dots as building blocks. In the enhancement quantum dots, just one electron can be brought into initially empty dot, in contrast to depletion mode dots based on expelling of electrons from multi-electron dots by gates. The quantum computer architectures based on depletion dots are confronted by several challenges making scalability difficult. These challenges can be successfully met by the approach based on ehnancement mode, capable of producing square array of dots with versatile functionalities. These functionalities allow transportation of qubits, including teleportation, and error correction based on straightforward one- and two-qubit operations. We describe physical properties and demonstrate experimental characteristics of enhancement quantum dots and single-electron transistors based on InAs/GaSb composite quantum wells. We discuss the materials aspects of quantum dot quantum computing, including the materials with large spin splitting such as InAs, as well as perspectives of enhancement mode approach in materials such as Si.
Quantum technologies exploit entanglement to revolutionize computing, measurements, and communications. This has stimulated the research in different areas of physics to engineer and manipulate fragile many-particle entangled states. Progress has been particularly rapid for atoms. Thanks to the large and tunable nonlinearities and the well developed techniques for trapping, controlling and counting, many groundbreaking experiments have demonstrated the generation of entangled states of trapped ions, cold and ultracold gases of neutral atoms. Moreover, atoms can couple strongly to external forces and light fields, which makes them ideal for ultra-precise sensing and time keeping. All these factors call for generating non-classical atomic states designed for phase estimation in atomic clocks and atom interferometers, exploiting many-body entanglement to increase the sensitivity of precision measurements. The goal of this article is to review and illustrate the theory and the experiments with atomic ensembles that have demonstrated many-particle entanglement and quantum-enhanced metrology.
We show a significant reduction of the number of quantum operations and the improvement of the circuit depth for the realization of the Toffoli gate by using qudits. This is done by establishing a general relation between the dimensionality of qudits and their topology of connections for a scalable multi-qudit processor, where higher qudit levels are used for substituting ancillas. The suggested model is of importance for the realization of quantum algorithms and as a method of quantum error correction codes for single-qubit operations.
Incorporating protection against quantum errors into adiabatic quantum computing (AQC) is an important task due to the inevitable presence of decoherence. Here we investigate an error-protected encoding of the AQC Hamiltonian, where qubit ensembles are used in place of qubits. Our Hamiltonian only involves total spin operators of the ensembles, offering a simpler route towards error-corrected quantum computing. Our scheme is particularly suited to neutral atomic gases where it is possible to realize large ensemble sizes and produce ensemble-ensemble entanglement. We identify a critical ensemble size $N_{mathrm{c}}$ where the nature of the first excited state becomes a single particle perturbation of the ground state, and the gap energy is predictable by mean-field theory. For ensemble sizes larger than $N_{mathrm{c}}$, the ground state becomes protected due to the presence of logically equivalent states and the AQC performance improves with $N$, as long as the decoherence rate is sufficiently low.
149 - D. Porras , J.I. Cirac 2007
We propose and analyze a new method to produce single and entangled photons which does not require cavities. It relies on the collective enhancement of light emission as a consequence of the presence of entanglement in atomic ensembles. Light emission is triggered by a laser pulse, and therefore our scheme is deterministic. Furthermore, it allows one to produce a variety of photonic entangled states by first preparing certain atomic states using simple sequences of quantum gates. We analyze the feasibility of our scheme, and particularize it to: ions in linear traps, atoms in optical lattices, and in cells at room temperature.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا