No Arabic abstract
Incorporating protection against quantum errors into adiabatic quantum computing (AQC) is an important task due to the inevitable presence of decoherence. Here we investigate an error-protected encoding of the AQC Hamiltonian, where qubit ensembles are used in place of qubits. Our Hamiltonian only involves total spin operators of the ensembles, offering a simpler route towards error-corrected quantum computing. Our scheme is particularly suited to neutral atomic gases where it is possible to realize large ensemble sizes and produce ensemble-ensemble entanglement. We identify a critical ensemble size $N_{mathrm{c}}$ where the nature of the first excited state becomes a single particle perturbation of the ground state, and the gap energy is predictable by mean-field theory. For ensemble sizes larger than $N_{mathrm{c}}$, the ground state becomes protected due to the presence of logically equivalent states and the AQC performance improves with $N$, as long as the decoherence rate is sufficiently low.
Adiabatic quantum computing (AQC) can be protected against thermal excitations via an encoding into error detecting codes, supplemented with an energy penalty formed from a sum of commuting Hamiltonian terms. Earlier work showed that it is possible to suppress the initial thermally induced excitation out of the encoded ground state, in the case of local Markovian environments, by using an energy penalty strength that grows only logarithmically in the system size, at a fixed temperature. The question of whether this result applies beyond the initial time was left open. Here we answer this in the affirmative. We show that thermal excitations out of the encoded ground state can be suppressed at arbitrary times under the additional assumption that the total evolution time is polynomial in the system size. Thus, computational problems that can be solved efficiently using AQC in a closed system setting, can still be solved efficiently subject to coupling to a thermal environment. Our construction uses stabilizer subspace codes, which require at least $4$-local interactions to achieve this result.
We propose an approach suitable for solving NP-complete problems via adiabatic quantum computation with an architecture based on a lattice of interacting spins (qubits) driven by locally adjustable effective magnetic fields. Interactions between qubits are assumed constant and instance-independent, programming is done only by changing local magnetic fields. Implementations using qubits coupled by magnetic-, electric-dipole and exchange interactions are discussed.
We demonstrate a simple pulse shaping technique designed to improve the fidelity of spin-dependent force operations commonly used to implement entangling gates in trapped-ion systems. This extension of the M{o}lmer-S{o}rensen gate can theoretically suppress the effects of certain frequency and timing errors to any desired order and is demonstrated through Walsh modulation of a two-qubit entangling gate on trapped atomic ions. The technique is applicable to any system of qubits coupled through collective harmonic oscillator modes.
Atomic ensembles, comprising clouds of atoms addressed by laser fields, provide an attractive system for both the storage of quantum information, and the coherent conversion of quantum information between atomic and optical degrees of freedom. In a landmark paper, Duan et al. (DLCZ) [1] showed that atomic ensembles could be used as nodes of a quantum repeater network capable of sharing pairwise quantum entanglement between systems separated by arbitrarily large distances. In recent years, a number of promising experiments have demonstrated key aspects of this proposal [2-7]. Here, we describe a scheme for full scale quantum computing with atomic ensembles. Our scheme uses similar methods to those already demonstrated experimentally, and yet has information processing capabilities far beyond those of a quantum repeater.
We present a protocol to evaluate the expectation value of the correlations of measurement outcomes for ensembles of quantum systems, and use it to experimentally demonstrate--under an assumption of fair sampling--the violation of an inequality that is satisfied by any non-contextual hidden-variables (NCHV) theory. The experiment is performed on an ensemble of molecular nuclear spins in the solid state, using established Nuclear Magnetic Resonance (NMR) techniques for quantum information processing (QIP).