Do you want to publish a course? Click here

Multiscale Analysis of Reaction Networks

136   0   0.0 ( 0 )
 Added by Luca Sbano
 Publication date 2008
  fields Biology
and research's language is English




Ask ChatGPT about the research

In most natural sciences there is currently the insight that it is necessary to bridge gaps between different processes which can be observed on different scales. This is especially true in the field of chemical reactions where the abilities to form bonds between different types of atoms and molecules create much of the properties we experience in our everyday life, especially in all biological activity. There are essentially two types of processes related to biochemical reaction networks, the interactions among molecules and interactions involving their conformational changes, so in a sense, their internal state. The first type of processes can be conveniently approximated by the so-called mass-action kinetics, but this is not necessarily so for the second kind where molecular states do not define any kind of density or concentration. In this paper we demonstrate the necessity to study reaction networks in a stochastic formulation for which we can construct a coherent approximation in terms of specific space-time scales and the number of particles. The continuum limit procedure naturally creates equations of Fokker-Planck type where the evolution of the concentration occurs on a slower time scale when compared to the evolution of the conformational changes, for example triggered by binding or unbinding events with other (typically smaller) molecules. We apply the asymptotic theory to derive the effective, i.e. macroscopic dynamics of the biochemical reaction system. The theory can also be applied to other processes where entities can be described by finitely many internal states, with changes of states occuring by arrival of other entities described by a birth-death process.



rate research

Read More

Biochemical reaction networks frequently consist of species evolving on multiple timescales. Stochastic simulations of such networks are often computationally challenging and therefore various methods have been developed to obtain sensible stochastic approximations on the timescale of interest. One of the rigorous and popular approaches is the multiscale approximation method for continuous time Markov processes. In this approach, by scaling species abundances and reaction rates, a family of processes parameterized by a scaling parameter is defined. The limiting process of this family is then used to approximate the original process. However, we find that such approximations become inaccurate when combinations of species with disparate abundances either constitute conservation laws or form virtual slow auxiliary species. To obtain more accurate approximation in such cases, we propose here an appropriate modification of the original method.
The use of mathematical methods for the analysis of chemical reaction systems has a very long history, and involves many types of models: deterministic versus stochastic, continuous versus discrete, and homogeneous versus spatially distributed. Here we focus on mathematical models based on deterministic mass-action kinetics. These models are systems of coupled nonlinear differential equations on the positive orthant. We explain how mathematical properties of the solutions of mass-action systems are strongly related to key properties of the networks of chemical reactions that generate them, such as specif
The Bond Graph approach and the Chemical Reaction Network approach to modelling biomolecular systems developed independently. This paper brings together the two approaches by providing a bond graph interpretation of the chemical reaction network concept of complexes. Both closed and open systems are discussed. The method is illustrated using a simple enzyme-catalysed reaction and a trans-membrane transporter.
The probability distribution describing the state of a Stochastic Reaction Network evolves according to the Chemical Master Equation (CME). It is common to estimated its solution using Monte Carlo methods such as the Stochastic Simulation Algorithm (SSA). In many cases these simulations can take an impractical amount of computational time. Therefore many methods have been developed that approximate the Stochastic Process underlying the Chemical Master Equation. Prominent strategies are Hybrid Models that regard the firing of some reaction channels as being continuous and applying the quasi-stationary assumption to approximate the dynamics of fast subnetworks. However as the dynamics of a Stochastic Reaction Network changes with time these approximations might have to be adapted during the simulation. We develop a method that approximates the solution of a CME by automatically partitioning the reaction dynamics into discrete/continuous components and applying the quasi-stationary assumption on identifiable fast subnetworks. Our method does not require user intervention and it adapts to exploit the changing timescale separation between reactions and/or changing magnitudes of copy numbers of constituent species. We demonstrate the efficiency of the proposed method by considering examples from Systems Biology and showing that very good approximations to the exact probability distributions can be achieved in significantly less computational time.
103 - Carsten Wiuf , Chuang Xu 2021
Deterministic reaction networks (RNs) are tools to model diverse biological phenomena characterized by particle systems, when there are abundant number of particles. Examples include but are not limited to biochemistry, molecular biology, genetics, epidemiology, and social sciences. In this chapter we propose a new type of decomposition of RNs, called fiber decomposition. Using this decomposition, we establish lifting of mass-action RNs preserving stationary properties, including multistationarity and absolute concentration robustness. Such lifting scheme is simple and explicit which imposes little restriction on the reaction networks. We provide examples to illustrate how this lifting can be used to construct RNs preserving certain dynamical properties.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا