Do you want to publish a course? Click here

A Cosmic Ray Resolution to the Superbubble Energy-Crisis

116   0   0.0 ( 0 )
 Added by Yousaf Mahmood Butt
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

Superbubbles (SBs) are amongst the greatest injectors of energy into the Galaxy, and have been proposed to be the acceleration site of Galactic cosmic rays. They are thought to be powered by the fast stellar winds and powerful supernova explosions of massive stars in dense stellar clusters and associations. Observations of the SB DEM L192 in the neighboring Large Magellenic Cloud (LMC) galaxy show that it contains only about one-third the energy injected by its constituent stars via fast stellar winds and supernovae. It is not yet understood where the excess energy is going, thus, the so-called energy crisis. We show here that it is very likely that a significant fraction of the unaccounted for energy is being taken up in accelerating cosmic rays, thus bolstering the argument for the SB origin of cosmic rays.



rate research

Read More

The nearby Orion-Eridanus superbubble, which was blown by multiple supernovae several Myr ago, has likely produced cosmic rays. Its turbulent medium, still energised by massive stars, can impact cosmic-ray transport locally. The gamma rays produced in cosmic-ray interactions with interstellar gas were used to compare the GeV to TeV cosmic-ray spectrum in the superbubble and in other regions near the Sun. We used ten years of Fermi-LAT data in the 0.25-63 GeV energy range to study the closer (Eridanus) end of the superbubble. We modelled the spatial and spectral distributions of the gamma rays produced in the different gas phases of the clouds found in this direction. We found that the gamma-ray emissivity spectrum of the gas along the outer rim and in a shell inside the superbubble is consistent with the average spectrum measured in the solar neighbourhood. This result calls for a detailed assessment of the recent supernova rate and census of massive stellar winds in the superbubble in order to estimate the epoch and rate of cosmic-ray production and to constrain the transport conditions that can lead to such homogeneity and little re-acceleration. We also found significant evidence that a diffuse cloud lying outside the superbubble, at a height of 200-250 pc below the Galactic plane, is pervaded by a 34% lower cosmic-ray flux, but with the same particle energy distribution as the local one. Super-GeV cosmic rays should freely cross such a diffuse atomic cloud without significant loss or spectral distorsion. We tentatively propose that the cosmic-ray loss relates to the orientation of the magnetic field lines threading the cirrus, which point towards the halo according to the dust polarisation data. We gathered past and present emissivity measurements near the Sun to show how the local cosmic-ray flux decreases with Galactic height and to compare this trend with model predictions.
The abundances of neon isotopes in the galactic cosmic rays (GCRs) are reported using data from the Cosmic Ray Isotope Spectrometer (CRIS) aboard the Advanced Composition Explorer (ACE). We compare our ACE-CRIS data for neon and refractory isotope ratios, and data from other experiments, with recent results from two-component Wolf-Rayet (WR) models. The three largest deviations of GCR isotope ratios from solar-system ratios predicted by these models are indeed present in the GCRs. Since WR stars are evolutionary products of OB stars, and most OB stars exist in OB associations that form superbubbles, the good agreement of these data with WR models suggests that superbubbles are the likely source of at least a substantial fraction of GCRs.
136 - S. Y. BenZvi 2011
A common problem in ultra-high energy cosmic ray physics is the comparison of energy spectra. The question is whether the spectra from two experiments or two regions of the sky agree within their statistical and systematic uncertainties. We develop a method to directly compare energy spectra for ultra-high energy cosmic rays from two different regions of the sky in the same experiment without reliance on agreement with a theoretical model of the energy spectra. The consistency between the two spectra is expressed in terms of a Bayes factor, defined here as the ratio of the likelihood of the two-parent source hypothesis to the likelihood of the one-parent source hypothesis. Unlike other methods, for example chi^2 tests, the Bayes factor allows for the calculation of the posterior odds ratio and correctly accounts for non-Gaussian uncertainties. The latter is particularly important at the highest energies, where the number of events is very small.
76 - P. Homola 2004
The hypothetical photonic origin of the most energetic air shower detected by the Flys Eye experiment is discussed. The method used for the analysis is based on Monte Carlo simulations including the effect of precascading of ultra-high energy (UHE) photons in the geomagnetic field. The application of this method to data expected from the Pierre Auger Observatory is discussed. The importance of complementing the southern Auger location by a northern site for UHE photon identification is pointed out.
Superbubbles are crucial for stellar feedback, with supposedly high (of the order of 10 per cent) thermalization rates. We combined multiband radio continuum observations from the Very Large Array (VLA) with Effelsberg data to study the non-thermal superbubble (NSB) in IC 10, a starburst dwarf irregular galaxy in the Local Group. Thermal emission was subtracted using a combination of Balmer H$alpha$ and VLA 32 GHz continuum maps. The bubbles non-thermal spectrum between 1.5 and 8.8 GHz displays curvature and can be well fitted with a standard model of an ageing cosmic ray electron population. With a derived equipartition magnetic field strength of $44pm 8 rmmu G$, and measuring the radiation energy density from Spitzer MIPS maps as $5pm 1times 10^{-11} rm erg, cm^{-3}$, we determine, based on the spectral curvature, a spectral age of the bubble of $1.0pm 0.3 rm Myr$. Analysis of the LITTLE THINGS HI data cube shows an expanding HI hole with 100 pc diameter and a dynamical age of $3.8pm 0.3 rm Myr$, centred to within 16 pc on IC 10 X-1, a massive stellar mass black hole ($M > 23 M_odot$). The results are consistent with the expected evolution for a superbubble with a few massive stars, where a very energetic event like a Type Ic supernova/hypernova has taken place about 1 Myr ago. We discuss alternatives to this interpretation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا