No Arabic abstract
(Abbr.) A study of cicumnuclear star-forming regions (CNSFRs) in several early type spirals has been made in order to investigate their main properties: stellar and gas kinematics, dynamical masses, ionising stellar masses, chemical abundances and other properties of the ionised gas. Both high resolution (R$ sim $20000) and moderate resolution (R ~ 5000) have been used. In some cases these regions, about 100 to 150 pc in size, are seen to be composed of several individual star clusters with sizes between 1.5 and 4.9 pc estimated from Hubble Space Telescope (HST) images. Stellar and gas velocity dispersions are found to differ by about 20 to 30 km/s with the H$beta$ emission lines being narrower than both the stellar lines and the [OIII] $lambda$ 5007 AA lines. The twice ionized oxygen, on the other hand, shows velocity dispersions comparable to those shown by stars. We have applied the virial theorem to estimate dynamical masses of the clusters, assuming that systems are gravitationally bounded and spherically symmetric, and using previously measured sizes. The measured values of the stellar velocity dispersions yield dynamical masses of the order of 10$^7$ to 10$^8$ solar masses for the whole CNSFRs. ...
We have obtained long-slit observations in the optical and near infrared of 12 circumnuclear HII regions (CNSFR) in the early type spiral galaxies NGC 2903, NGC 3351 and NGC 3504 with the aim of deriving their chemical abundances. Only for one of the regions, the [SIII] $lambda$ 6312 AA was detected providing, together with the nebular [SIII] lines at $lambdalambda$ 9069, 9532 AA, a value of the electron temperature of T$_e$([SIII])= 8400$^{+ 4650}_{-1250}$K. A semi-empirical method for the derivation of abundances in the high metallicity regime is presented. We obtain abundances which are comparable to those found in high metallicity disc HII regions from direct measurements of electron temperatures and consistent with solar values within the errors. The region with the highest oxygen abundance is R3+R4 in NGC 3504, 12+log(O/H) = 8.85, about 1.5 solar if the solar oxygen abundance is set at the value derived by Asplund et al. (2005), 12+log(O/H)$_{odot}$ = 8.66$pm$0.05. Region R7 in NGC 3351 has the lowest oxygen abundance of the sample, about 0.6 times solar. In all the observed CNSFR the O/H abundance is dominated by the O$^+$/H$^+$ contribution, as is also the case for high metallicity disc HII regions. For our observed regions, however, also the S$^+$/S$^{2+}$ ratio is larger than one, contrary to what is found in high metallicity disc HII regions for which, in general, the sulphur abundances are dominated by S$^{2+}$/H$^+$...
We present the measurements of gas and stellar velocity dispersions in 17 circumnuclear star-forming regions (CNSFRs) and the nuclei of three barred spiral galaxies: NGC2903, NGC3310 and NGC3351 from high dispersion spectra. The stellar dispersions have been obtained from the CaII triplet (CaT) lines at 8494, 8542, 8662A, while the gas velocity dispersions have been measured by Gaussian fits to the Hbeta and to the [OIII]5007A lines. The CNSFRs, with sizes of about 100 to 150pc in diameter, are seen to be composed of several individual star clusters with sizes between 1.5 and 6.2pc on HST images. Using the stellar velocity dispersions, we have derived dynamical masses for the entire star-forming complexes and for the individual star clusters. Values of the stellar velocity dispersions are between 31 and 73 km/s. Dynamical masses for the whole CNSFRs are between 4.9x10^6 and 1.9x10^8 Mo and between 1.4x10^6 and 1.1x10^7 Mo for the individual star clusters. We have found indications for the presence of two different kinematical components in the ionized gas of the regions. The narrow component of the two-component Gaussian fits seem to have a relatively constant value for all the studied CNSFRs, with estimated values close to 25 km/s. This narrow component could be identified with ionized gas in a rotating disc, while the stars and the fraction of the gas (responsible for the broad component) related to the star-forming regions would be mostly supported by dynamical pressure.
Circumnuclear star forming regions, also called hotspots, are often found in the inner regions of some spiral galaxies where intense processes of star formation are taking place. In the UV, massive stars dominate the observed circumnuclear emission even in the presence of an active nucleus, contributing between 30 and 50% to the H$beta$ total emission of the nuclear zone. Spectrophotometric data of moderate resolution (3000 < R < 11000) are presented from which the physical properties of the ionized gas: electron density, oxygen abundances, ionization structure etc. have been derived.
We have conducted a search for ionized gas at 3.6 cm, using the Very Large Array, towards 31 Galactic intermediate- and high-mass clumps detected in previous millimeter continuum observations. In the 10 observed fields, 35 HII regions are identified, of which 20 are newly discovered. Many of the HII regions are multiply peaked indicating the presence of a cluster of massive stars. We find that the ionized gas tends to be associated towards the millimeter clumps; of the 31 millimeter clumps observed, 9 of these appear to be physically related to ionized gas, and a further 6 have ionized gas emission within 1. For clumps with associated ionized gas, the combined mass of the ionizing massive stars is compared to the clump masses to provide an estimate of the instantaneous star formation efficiency. These values range from a few percent to 25%, and have an average of 7 +/- 8%. We also find a correlation between the clump mass and the mass of the ionizing massive stars within it, which is consistent with a power law. This result is comparable to the prediction of star formation by competitive accretion that a power law relationship exists between the mass of the most massive star in a cluster and the total mass of the remaining stars.
We present a study of the ionized gas in a sample of 65 nearby early-type galaxies, for which we have acquired optical intermediate-resolution spectra. Emission lines are detected in ~89 % of the sample. The incidence of emission appears independent from the E or S0 morphological classes. According to classical diagnostic diagrams, the majority of the galaxies are LINERs. However, the galaxies tend to move toward the Composites region (at lower [NII]/Halpha values) as the emission lines are measured at larger galacto-centric distances. This suggests that different ionization mechanisms may be at work in LINERs.