Do you want to publish a course? Click here

The nature of ionized gas in early-type galaxies

89   0   0.0 ( 0 )
 Added by Francesca Annibali
 Publication date 2009
  fields Physics
and research's language is English
 Authors F. Annibali




Ask ChatGPT about the research

We present a study of the ionized gas in a sample of 65 nearby early-type galaxies, for which we have acquired optical intermediate-resolution spectra. Emission lines are detected in ~89 % of the sample. The incidence of emission appears independent from the E or S0 morphological classes. According to classical diagnostic diagrams, the majority of the galaxies are LINERs. However, the galaxies tend to move toward the Composites region (at lower [NII]/Halpha values) as the emission lines are measured at larger galacto-centric distances. This suggests that different ionization mechanisms may be at work in LINERs.

rate research

Read More

We present low resolution Spitzer-IRS spectra of 40 ETGs, selected from a sample of 65 ETGs showing emission lines in their optical spectra. We homogeneously extract the mid-infrared (MIR) spectra, and after the proper subtraction of a passive ETG template, we derive the intensity of the ionic and molecular lines and of the polycyclic aromatic hydrocarbon emission features. We use MIR diagnostic diagrams to investigate the powering mechanisms of the ionized gas. The mid-infrared spectra of early-type galaxies show a variety of spectral characteristics. We empirically sub-divide the sample into five classes of spectra with common characteristics. Class-0, accounting for 20% of the sample, are purely passive ETGs with neither emission lines nor PAH features. Class-1 show emission lines but no PAH features, and account for 17.5% of the sample. Class-2, in which 50% of the ETGs are found, as well as having emission lines, show PAH features with unusual ratios, e.g. 7.7 {mu}m/11.3 {mu}m leq 2.3. Class-3 objects have emission lines and PAH features with ratios typical of star-forming galaxies. 7.5% of objects fall in this class, likely to be objects in a starburst/post-starburst regime. Class-4, containing only 5% of the ETGs, is dominated by a hot dust continuum. The diagnostic diagram [Ne III]15.55{mu}m/[Ne II]12.8{mu}m vs. [S III]33.48{mu}m/[Si II]34.82{mu}m, is used to investigate the different mechanisms ionizing the gas. If we exclude NGC 3258 where a starburst seems present, most of our ETGs contain gas ionized via either AGN-like or shock phenomena, or both. Most of the spectra in the present sample are classified as LINERs in the optical window. The proposed MIR spectral classes show unambiguously the manifold of the physical processes and ionization mechanisms, from star formation, low level AGN activity, to shocks, present in LINER nuclei.
We present results of optical broad-band and narrow-band Halpha observations of a sample of forty nearby early-type galaxies. The majority of sample galaxies are known to have dust in various forms viz. dust lanes, nuclear dust and patchy/filamentary dust. A detailed study of dust was performed for 12 galaxies with prominent dust features. The extinction curves for these galaxies run parallel to the Galactic extinction curve, implying that the properties of dust in these galaxies are similar to those of the Milky-Way. The ratio of total to selective extinction (Rv) varies between 2.1 and 3.8, with an average of 2.9 +/- 0.2, fairly close to its canonical value of 3.1 for our Galaxy. The average relative grain size <a>/a_Gal of dust particles in these galaxies turns out to be 1.01 +/- 0.2, while dust mass estimated using optical extinction lies in the range 10^2 to 10^4 M(sun) . The Halpha emission was detected in 23 out of 29 galaxies imaged through narrow- band filters with the Halpha luminosities in the range 10^38 - 10^41 erg s^-1. The mass of the ionized gas is in the range 10^3-10^5 M(sun). The morphology and extent of ionized gas is found similar to those of dust, indicating possible coexistence of dust and ionized gas in these galaxies. The absence of any apparent correlation between blue luminosity and normalized IRAS dust mass is suggestive of merger related origin of dust and gas in these galaxies.
We present GALEX far-ultraviolet (FUV, $lambda_{eff}$=1538 AA) and near-ultraviolet (NUV, $lambda_{eff}$=2316 AA) surface photometry of 40 early-type galaxies (ETGs) selected from a wider sample of 65 nearby ETGs showing emission lines in their optical spectra. We derive FUV and NUV surface brightness profiles, (FUV-NUV) colour profiles and D$_{25}$ integrated magnitudes. We extend the photometric study to the optical {it r} band from SDSS imaging for 14 of these ETGs. In general, the (FUV-NUV) radial colour profiles become redder with galactocentric distance in both rejuvenated ($leq 4$ Gyr) and old ETGs. Colour profiles of NGC 1533, NGC 2962, NGC 2974, NGC 3489, and IC 5063 show rings and/or arm-like structures, bluer than the body of the galaxy, suggesting the presence of recent star formation. Although seven of our ETGs show shell systems in their optical image, only NGC 7135 displays shells in the UV bands. We characterize the UV and optical surface brightness profiles, along the major axis, using a Sersic law. The Sersic law exponent, $n$, varies from 1 to 16 in the UV bands. S0 galaxies tend to have lower values of $n$ ($leq5$). The Sersic law exponent $n=4$ seems to be a watershed: ETGs with $n>4$ tend to have [$alpha$/Fe] greater than 0.15, implying a short star-formation time scale. We find a significant correlation between the FUV$-$NUV colour and central velocity dispersions $sigma$, with the UV colours getting bluer at larger $sigma$. This trend is likely driven by a combined effect of `downsizing and of the mass-metallicity relation.
As part of the CALIFA survey, we conducted a thorough 2D analysis of the ionized gas in two E/S0 galaxies, NGC6762 and NGC5966, aiming to shed light on the nature of their warm ionized ISM. We present optical IFS obtained with the PMAS/PPAK spectrophotometer. To recover the nebular lines, we subtracted the underlying stellar continuum from the observed spectra using the STARLIGHT code. In NGC6762, the ionized gas and stellar emission display similar morphologies, while the emission line morphology is elongated in NGC5966, spanning ~6 kpc, and is oriented roughly orthogonal to the major axis of the stellar continuum ellipsoid. Whereas gas and stars are kinematically aligned in NGC6762, the gas is kinematically decoupled from the stars in NGC5966. A decoupled rotating disk or an ionization cone are two possible interpretations of the elongated ionized gas structure in NGC5966. The latter would be the first ionization cone of such a dimension detected within a weak emission-line galaxy. Both galaxies have weak emission-lines relative to the continuum [EW(Ha)< 3 A] and have low excitation, log([OIII]5007/Hb) < 0.5. Based on optical diagnostic ratios ([OIII]5007/Hb,[NII]6584/Ha,[SII]6717,6731/Ha,[OI]6300/Ha), both objects contain a LINER nucleus and an extended LINER-like gas emission. The emission line ratios do not vary significantly with radius or aperture, which indicates that the nebular properties are spatially homogeneous. The gas emission in NGC6762 can be best explained by photoionization by pAGB stars without the need of invoking any other excitation mechanism. In the case of NGC5966, the presence of a nuclear ionizing source seems to be required to shape the elongated gas emission feature in the ionization cone scenario, although ionization by pAGB stars cannot be ruled out.(abridged)
The molecular gas content of local early-type galaxies is constrained and discussed in relation to their evolution. First, as part of the Atlas3D survey, we present the first complete, large (260 objects), volume-limited single-dish survey of CO in normal local early-type galaxies. We find a surprisingly high detection rate of 22%, independent of luminosity and at best weakly dependent on environment. Second, the extent of the molecular gas is constrained with CO synthesis imaging, and a variety of morphologies is revealed. The kinematics of the molecular gas and stars are often misaligned, implying an external gas origin in over a third of the systems, although this behaviour is drastically diffferent between field and cluster environments. Third, many objects appear to be in the process of forming regular kpc-size decoupled disks, and a star formation sequence can be sketched by piecing together multi-wavelength information on the molecular gas, current star formation, and young stars. Last, early-type galaxies do not seem to systematically obey all our usual prejudices regarding star formation, following the standard Schmidt-Kennicutt law but not the far infrared-radio correlation. This may suggest a greater diversity in star formation processes than observed in disk galaxies. Using multiple molecular tracers, we are thus starting to probe the physical conditions of the cold gas in early-types.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا