Do you want to publish a course? Click here

Modelling the Localized to Itinerant Electronic Transition in the Heavy Fermion System CeIrIn5

109   0   0.0 ( 0 )
 Added by Ji Hoon Shim
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We address the fundamental question of crossover from localized to itinerant state of a paradigmatic heavy fermionmaterial CeIrIn5. The temperature evolution of the one electron spectra and the optical conductivity is predicted from first principles calculation. The buildup of coherence in the form of a dispersive many body feature is followed in detail and its effects on the conduction electrons and optical conductivity of the material is revealed. We find multiple hybridization gaps and link them to the crystal structure of the material. Our theoretical approach explains the multiple peak structures observed in optical experiments and the sensitivity of CeIrIn5 to substitutions of the transition metal element and may provide a microscopic basis for the more phenomenological descriptions currently used to interpret experiments in heavy fermion systems.



rate research

Read More

96 - Haiyan Lu , Li Huang 2021
The temperature-dependent evolution pattern of 5f electrons helps to elucidate the long-standing itinerant-localized dual nature in plutonium-based compounds. In this work, we investigate the correlated electronic states of PuIn3 dependence on temperature by using a combination of the density functional theory and the dynamical mean-field theory. Not only the experimental photoemission spectroscopy is correctly reproduced, but also a possible hidden 5f itinerant-localized crossover is identified. Moreover, it is found that the quasiparticle multiplets from the many-body transitions gradually enhance with decreasing temperature, accompanied by the hybridizations with 5f electrons and conduction bands. The temperature-induced variation of Fermi surface topology suggests a possible electronic Lifshitz transition and the onset of magnetic order at low temperature. Finally, the ubiquitous existence orbital selective 5f electron correlation is also discovered in PuIn3. These illuminating results shall enrich the understanding on Pu-based compounds and serve as critical predictions for ongoing experimental research.
The ability to spatially modulate the electronic properties of solids has led to landmark discoveries in condensed matter physics as well as new electronic applications. Although crystals of strongly correlated metals exhibit a diverse set of electronic ground states, few approaches to spatially modulating their properties exist. Here we demonstrate spatial control over the superconducting state in mesoscale samples of the canonical heavy-fermion superconductor CeIrIn5. We use a focused ion beam (FIB) to pattern crystals on the microscale, which tailors the strain induced by differential thermal contraction into specific areas of the device. The resulting non-uniform strain fields induce complex patterns of superconductivity due to the strong dependence of the transition temperature on the strength and direction of strain. Electrical transport and magnetic imaging of devices with different geometry show that the obtained spatial modulation of superconductivity agrees with predictions based on finite element simulations. These results present a generic approach to manipulating electronic order on micrometer length scales in strongly correlated matter.
Physical properties of polycrystalline CeCrGe$_{3}$ and LaCrGe$_{3}$ have been investigated by x-ray absorption spectroscopy, magnetic susceptibility $chi(T)$, isothermal magnetization M(H), electrical resistivity $rho(T)$, specific heat C($T$) and thermoelectric power S($T$) measurements. These compounds are found to crystallize in the hexagonal perovskite structure (space group textit{P6$_{3}$/mmc}), as previously reported. The $rho(T)$, $chi(T)$ and C($T$) data confirm the bulk ferromagnetic ordering of itinerant Cr moments in LaCrGe$_{3}$ and CeCrGe$_{3}$ with $T_{C}$ = 90 K and 70 K respectively. In addition a weak anomaly is also observed near 3 K in the C($T$) data of CeCrGe$_{3}$. The T dependences of $rho$ and finite values of Sommerfeld coefficient $gamma$ obtained from the specific heat measurements confirm that both the compounds are of metallic character. Further, the $T$ dependence of $rho$ of CeCrGe$_{3}$ reflects a Kondo lattice behavior. An enhanced $gamma$ of 130 mJ/mol,K$^{2}$ together with the Kondo lattice behavior inferred from the $rho(T)$ establish CeCrGe$_{3}$ as a moderate heavy fermion compound with a quasi-particle mass renormalization factor of $sim$ 45.
A quantum critical point (QCP) of the heavy fermion Ce(Ru_{1-x}Rh_x)_2Si_2 (x = 0, 0.03) has been studied by single-crystalline neutron scattering. By accurately measuring the dynamical susceptibility at the antiferromagnetic wave vector k_3 = 0.35 c^*, we have shown that the energy width Gamma(k_3), i.e., inverse correlation time, depends on temperature as Gamma(k_3) = c_1 + c_2 T^{3/2 +- 0.1}, where c_1 and c_2 are x dependent constants, in a low temperature range. This critical exponent 3/2 +- 0.1 proves that the QCP is controlled by that of the itinerant antiferromagnet.
78 - D. H. Xie , M. L. Li , W. Zhang 2016
In heavy-fermion compounds, f electrons show both itinerant and localized behaviour depending on the external conditions, and the hybridization between localized f electrons and itinerant conduction bands gives rise to their exotic properties like heavy-fermions, magnetic orders and unconventional superconductivity. Duo to the risk of handling radioactive actinide materials, the direct experimental evidence of the band structure evolution across the localized-itinerant and magnetic transitions for 5f electrons is lacking. Here, by using angle-resolved photoelectron spectroscopy, we revealed the dual nature (localized vs itinerant) and the development of two different kinds of heavy quasi-particle bands of 5f electrons in antiferromagnetic (AFM) USb2. Partially opened energy gaps were observed on one quasi-particle 5f band cross the AFM transition around 203 K, indicating that the magnetic orders in USb2 are of spin density wave (SDW) type similar to Cr. The localized 5f electrons and itinerant conduction bands hybridize to form another heavy quasi-particle band at about 120 K, and then open hybridization gaps at even lower temperature. Our results provide direct spectral demonstration of the localized-itinerant transition, hybridization and SDW transition of 5f electrons for uranium-based materials.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا