Do you want to publish a course? Click here

High-field vortices in Josephson junctions with alternating critical current density

381   0   0.0 ( 0 )
 Added by Roman G. Mints
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study long Josephson junctions with the critical current density alternating along the junction. New equilibrium states, which we call the field synchronized or FS states, are shown to exist if the applied field is from narrow intervals centered around equidistant series of resonant fields, $H_m$. The values of $H_m$ are much higher than the flux penetration field, $H_s$. The flux per period of the alternating critical current density, $phi_i$, is fixed for each of the FS states. In the $m$-th FS state the value of $phi_i$ is equal to an integer amount of flux quanta, $phi_i =mphi_0$. Two types of single Josephson vortices carrying fluxes $phi_0$ or/and $phi_0/2$ can exist in the FS states. Specific stepwise resonances in the current-voltage characteristics are caused by periodic motion of these vortices between the edges of the junction.



rate research

Read More

We consider theoretically and numerically magnetic field dependencies of the maximum supercurrent across Josephson tunnel junctions with spatially alternating critical current density. We find that two flux-penetration fields and one-splinter-vortex equilibrium state exist in long junctions.
156 - M. Moshe , R. G. Mints 2007
We treat theoretically Shapiro steps in tunnel Josephson junctions with spatially alternating critical current density. Explicit analytical formulas for the width of the first integer (normal) and half-integer (anomalous) Shapiro steps are derived for short junctions. We develop coarse-graining approach, which describes Shapiro steps in the voltage-current curves of the asymmetric grain boundaries in YBCO thin films and different superconductor-ferromagnet-superconductor Josephson-type heterostructures.
Josephson junctions with ferromagnetic layers are vital elements in a new class of cryogenic memory devices. One style of memory device contains a spin valve with one hard magnetic layer and one soft layer. To achieve low switching fields, it is advantageous for the soft layer to have low magnetization and low magnetocrystalline anisotropy. A candidate class of materials that fulfills these criteria is the Pd$_{1-x}$Fe$_{x}$ alloy system with low Fe concentrations. We present studies of micron-scale elliptically-shaped Josephson junctions containing Pd$_{97}$Fe$_{3}$ layers of varying thickness. By applying an external magnetic field, the critical current of the junctions are found to follow characteristic Fraunhofer patterns. The maximum value of the critical current, extracted from the Fraunhofer patterns, oscillates as a function of the ferromagnetic barrier thickness, indicating transitions in the phase difference across the junction between values of zero and $pi$.
Josephson junctions containing ferromagnetic layers are of considerable interest for the development of practical cryogenic memory and superconducting qubits. Such junctions exhibit a phase shift of $pi$ for certain ranges of ferromagnetic layer thickness. We present studies of Nb based micron-scale elliptically-shaped Josephson junctions containing ferromagnetic barriers of Ni$_{81}$Fe$_{19}$ or Ni$_{65}$Co$_{20}$Fe$_{15}$. By applying an external magnetic field, the critical current of the junctions are found to follow characteristic Fraunhofer patterns, and display sharp switching behavior suggestive of single-domain magnets. The high quality of the Fraunhofer patterns enables us to extract the maximum value of the critical current even when the peak is shifted significantly outside the range of the data due to the magnetic moment of the ferromagnetic layer. The maximum value of the critical current oscillates as a function of the ferromagnetic barrier thickness, indicating transitions in the phase difference across the junction between values of zero and $pi$. We compare the data to previous work and to models of the 0-$pi$ transitions based on existing theories.
We present the latest generation of superconductor-insulator-ferromagnet-superconductor Josephson tunnel junctions with a step-like thickness of the ferromagnetic (F) layer. The F-layer thicknesses $d_1$ and $d_2$ in both halves were varied to obtain different combinations of positive and negative critical current densities $j_{c,1}$ and $j_{c,2}$. The measured dependences of the critical current on applied magnetic field can be well described by a model which takes into account different critical current densities (obtained from reference junctions) and different net magnetization of the multidomain ferromagnetic layer in both halves.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا