No Arabic abstract
We report a new search for 12CO(1-0) emission in high-velocity clouds (HVCs) performed with the IRAM 30 m telescope. This search was motivated by the recent detection of cold dust emission in the HVCs of Complex C. Despite a spatial resolution which is three times better and sensitivity twice as good compared to previous studies, no CO emission is detected in the HVCs of Complex C down to a best 5 sigma limit of 0.16 K km/s at a 22 resolution. The CO emission non-detection does not provide any evidence in favor of large amounts of molecular gas in these HVCs and hence in favor of the infrared findings. We discuss different configurations which, however, allow us to reconcile the negative CO result with the presence of molecular gas and cold dust emission. H2 column densities higher than our detection limit, N(H2) = 3x10^{19} cm^{-2}, are expected to be confined in very small and dense clumps with 20 times smaller sizes than the 0.5 pc clumps resolved in our observations according to the results obtained in cirrus clouds, and might thus still be highly diluted. As a consequence, the inter-clump gas at the 1 pc scale has a volume density lower than 20 cm^{-3} and already appears as too diffuse to excite the CO molecules. The observed physical conditions in the HVCs of Complex C also play an important role against CO emission detection. It has been shown that the CO-to-H2 conversion factor in low metallicity media is 60 times higher than at the solar metallicity, leading for a given H2 column density to a 60 times weaker integrated CO intensity. And the very low dust temperature estimated in these HVCs implies the possible presence of gas cold enough (< 20 K) to cause CO condensation onto dust grains under interstellar medium pressure conditions and thus CO depletion in gas-phase observations.
Supernovae from core-collapse of massive stars drive shocks into the molecular clouds from which the stars formed. Such shocks affect future star formation from the molecular clouds, and the fast-moving, dense gas with compressed magnetic fields is associated with enhanced cosmic rays. This paper presents new theoretical modeling, using the Paris-Durham shock model, and new observations, using the Stratospheric Observatory for Infrared Astronomy (SOFIA), of the H$_2$ S(5) pure rotational line from molecular shocks in the supernova remnant IC443. We generate MHD models for non-steady-state shocks driven by the pressure of the IC443 blast wave into gas of densities $10^3$ to $10^5$ cm$^{-3}$. We present the first detailed derivation of the shape of the velocity profile for emission from H$_2$ lines behind such shocks, taking into account the shock age, preshock density, and magnetic field. For preshock densities $10^3$-$10^5$ cm$^{-3}$, the the predicted shifts of line centers, and the line widths, of the H$_2$ lines range from 20-2, and 30-4 km/s, respectively. The a priori models are compared to the observed line profiles, showing that clumps C and G can be explained by shocks into gas with density 10$^3$ to $2times 10^4$ cm$^{-3}$ and strong magnetic fields. For clump B2 (a fainter region near clump B), the H$_2$ spectrum requires a J-type shock into moderate density (~100 cm$^{-3}$) with the gas accelerated to 100 km/s from its pre-shock location. Clump B1 requires both a magnetic-dominated C-type shock (like for clumps C and G) and a J-type shock (like for clump B1) to explain the highest observed velocities. The J-type shocks that produce high-velocity molecules may be locations where the magnetic field is nearly parallel to the shock velocity, which makes it impossible for a C-type shock (with ions and neutrals separated) to form.
We present a unified description of the scenario of Global Hierarchical Collapse and fragmentation (GHC) in molecular clouds (MCs), owing to the continuous decrease of the average Jeans mass in the contracting cloud. GHC constitutes a regime of collapses within collapses, in which small-scale collapses begin at later times, but occur on shorter timescales than large-scale ones. The difference in timescales allows for most of the clouds mass to be dispersed by feedback from the first massive stars, maintaining the global star formation rate low. All scales accrete from their parent structures. The main features of GHC are: star-forming MCs are in an essentially pressureless regime, which produces filaments that accrete onto clumps and cores (hubs). The filaments constitute the collapse flow from cloud to hub scales and may approach a quasi-stationary state; the molecular and dense mass fractions of the clouds increase over time; the first (low-mass) stars appear several Myr after global contraction began; more massive stars appear after a few Myr in massive hubs resulting from the collapse of larger scales; the minimum fragment mass may extend well into the brown-dwarf regime; Bondi-Hoyle-Lyttleton accretion occurs at the protostellar and core scales, accounting for a near-Salpeter IMF; the extreme anisotropy of the filamentary network explains the difficulty in detecting large-scale infall signatures; the balance between inertial and gravitationally-driven motions in clumps evolves during the contraction; prestellar cores adopt Bonnor-Ebert-like profiles, but are contracting ever since early times when they may appear to be unbound and to require pressure confinement; stellar clusters develop radial age and mass segregation gradients. Finally, we discuss the incompatibility between supersonic turbulence and the observed scalings in the molecular hierarchy.
We consider here the class of compact, isolated, high-velocity HI clouds, CHVCs, which are sharply bounded in angular extent down to a limiting column density of 1.5x10^18 cm^-2. We describe our automated search algorithm and its application to the LDS north of dec= -28 deg. and the HIPASS data south of dec=0, resulting in an all--sky catalog numbering 246 CHVCs. We argue that these objects are more likely to represent a single phenomenon in a similar evolutionary state than would a sample which included any of the major HVC complexes. Five principal observables are defined for the CHVC population: (1) the spatial deployment of the objects on the sky, (2) the kinematic distribution, (3) the number distribution of observed HI column densities, (4) the number distribution of angular sizes, and (5) the number distribution of line widths. We show that the spatial and kinematic deployments of the ensemble of CHVCs contain various clues regarding their characteristic distance. These clues are not compatible with a location of the ensemble within the Galaxy proper. The deployments resemble in several regards those of the Local Group galaxies. We describe a model testing the hypothesis that the CHVCs are a Local Group population. The agreement of the model with the data is judged by extracting the observables from simulations, in a manner consistent with the sensitivities of the observations and explicitly taking account of Galactic obscuration. We show that models in which the CHVCs are the HI counterparts of dark-matter halos evolving in the Local Group potential provide a good match to the observables, if account is taken of tidal and ram--pressure disruption, the consequences of obscuration due to Galactic HI and of differing sensitivities and selection effects pertaining to the surveys.
In order to determine if the material ablated from high-velocity clouds (HVCs) is a significant source of low-velocity high ions (C IV, N V, and O VI) such as those found in the Galactic halo, we simulate the hydrodynamics of the gas and the time-dependent ionization evolution of its carbon, nitrogen, and oxygen ions. Our suite of simulations examines the ablation of warm material from clouds of various sizes, densities, and velocities as they pass through the hot Galactic halo. The ablated material mixes with the environmental gas, producing an intermediate-temperature mixture that is rich in high ions and that slows to the speed of the surrounding gas. We find that the slow mixed material is a significant source of the low-velocity O VI that is observed in the halo, as it can account for at least ~1/3 of the observed O VI column density. Hence, any complete model of the high ions in the halo should include the contribution to the O VI from ablated HVC material. However, such material is unlikely to be a major source of the observed C IV, presumably because the observed C IV is affected by photoionization, which our models do not include. We discuss a composite model that includes contributions from HVCs, supernova remnants, a cooling Galactic fountain, and photoionization by an external radiation field. By design, this model matches the observed O VI column density. This model can also account for most or all of the observed C IV, but only half of the observed N V.
We present hydrodynamic simulations of high-velocity clouds (HVCs) traveling through the hot, tenuous medium in the Galactic halo. A suite of models was created using the FLASH hydrodynamics code, sampling various cloud sizes, densities, and velocities. In all cases, the cloud-halo interaction ablates material from the clouds. The ablated material falls behind the clouds, where it mixes with the ambient medium to produce intermediate-temperature gas, some of which radiatively cools to less than 10,000 K. Using a non-equilibrium ionization (NEI) algorithm, we track the ionization levels of carbon, nitrogen, and oxygen in the gas throughout the simulation period. We present observation-related predictions, including the expected H I and high ion (C IV, N V, and O VI) column densities on sight lines through the clouds as functions of evolutionary time and off-center distance. The predicted column densities overlap those observed for Complex C. The observations are best matched by clouds that have interacted with the Galactic environment for tens to hundreds of megayears. Given the large distances across which the clouds would travel during such time, our results are consistent with Complex C having an extragalactic origin. The destruction of HVCs is also of interest; the smallest cloud (initial mass approx 120 Msun) lost most of its mass during the simulation period (60 Myr), while the largest cloud (initial mass approx 4e5 Msun) remained largely intact, although deformed, during its simulation period (240 Myr).