Do you want to publish a course? Click here

Supernova Shocks in Molecular Clouds: Velocity Distribution of Molecular Hydrogen

383   0   0.0 ( 0 )
 Added by William T. Reach
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Supernovae from core-collapse of massive stars drive shocks into the molecular clouds from which the stars formed. Such shocks affect future star formation from the molecular clouds, and the fast-moving, dense gas with compressed magnetic fields is associated with enhanced cosmic rays. This paper presents new theoretical modeling, using the Paris-Durham shock model, and new observations, using the Stratospheric Observatory for Infrared Astronomy (SOFIA), of the H$_2$ S(5) pure rotational line from molecular shocks in the supernova remnant IC443. We generate MHD models for non-steady-state shocks driven by the pressure of the IC443 blast wave into gas of densities $10^3$ to $10^5$ cm$^{-3}$. We present the first detailed derivation of the shape of the velocity profile for emission from H$_2$ lines behind such shocks, taking into account the shock age, preshock density, and magnetic field. For preshock densities $10^3$-$10^5$ cm$^{-3}$, the the predicted shifts of line centers, and the line widths, of the H$_2$ lines range from 20-2, and 30-4 km/s, respectively. The a priori models are compared to the observed line profiles, showing that clumps C and G can be explained by shocks into gas with density 10$^3$ to $2times 10^4$ cm$^{-3}$ and strong magnetic fields. For clump B2 (a fainter region near clump B), the H$_2$ spectrum requires a J-type shock into moderate density (~100 cm$^{-3}$) with the gas accelerated to 100 km/s from its pre-shock location. Clump B1 requires both a magnetic-dominated C-type shock (like for clumps C and G) and a J-type shock (like for clump B1) to explain the highest observed velocities. The J-type shocks that produce high-velocity molecules may be locations where the magnetic field is nearly parallel to the shock velocity, which makes it impossible for a C-type shock (with ions and neutrals separated) to form.



rate research

Read More

230 - Gary J. Melnick 2020
The depth-dependent abundance of both gas-phase and solid-state water within dense, quiescent, molecular clouds is important to both the cloud chemistry and gas cooling. Where water is in the gas phase, its free to participate in the network of ion-neutral reactions that lead to a host of oxygen-bearing molecules, and its many ortho and para energy levels make it an effective coolant for gas temperatures greater than 20K. Where water is abundant as ice on grain surfaces, and unavailable to cool the gas, significant amounts of oxygen are removed from the gas phase, suppressing the gas-phase chemical reactions that lead to a number of oxygen-bearing species, including O2. Models of FUV-illuminated clouds predict that the gas-phase water abundance peaks in the range Av ~3 and 8mag of the cloud surface, depending on the gas density and FUV field strength. Deeper within such clouds, water is predicted to exist mainly as ice on grain surfaces. More broadly, these models are used to analyze a variety of other regions, including outflow cavities associated with young stellar objects and the surface layers of protoplanetary disks. In this paper, we report the results of observational tests of FUV-illuminated cloud models toward the Orion Molecular Ridge and Cepheus B using data obtained from the Herschel Space Observatory and the Five College Radio Astronomy Observatory. Toward Orion, 2220 spatial positions were observed along the face-on Orion Ridge in the H2O 110-101 557GHz and NH3 J,K=1,0-0,0 572GHz lines. Toward Cepheus B, two strip scans were made in the same lines across the edge-on ionization front. These new observations demonstrate that gas-phase water exists primarily within a few magnitudes of dense cloud surfaces, strengthening the conclusions of an earlier study based on a much smaller data set, and indirectly supports the prediction that water ice is quite abundant in dense clouds.
Interstellar medium clouds in the W28 region are emitting gamma-rays and it is likely that the W28 supernova remnant is responsible, making W28 a prime candidate for the study of cosmic-ray acceleration and diffusion. Understanding the influence of both supernova remnant shocks and cosmic rays on local molecular clouds can help to identify multi-wavelength signatures of probable cosmic-ray sources. To this goal, transitions of OH, SiO, NH3, HCO+ and CS have complemented CO in allowing a characterization of the chemically rich environment surrounding W28. This remnant has been an ideal test-bed for techniques that will complement arcminute-scale studies of cosmic-ray source candidates with future GeV-PeV gamma-ray observations.
Feedback from supernovae is often invoked as an important process in limiting star formation, removing gas from galaxies and hence as a determining process in galaxy formation. Here we report on numerical simulations investigating the interaction between supernova explosions and the natal molecular cloud. We also consider the cases with and without previous feedback from the high-mass star in the form of ionising radiation and stellar winds. The supernova is able to find weak points in the cloud and create channels through which it can escape, leaving much of the well shielded cloud largely unaffected. This effect is increased when the channels are pre-existing due to the effects of previous stellar feedback. The expanding supernova deposits its energy in the gas that is in these exposed channels, and hence sweeps up less mass when feedback has already occurred, resulting in faster outflows with less radiative losses. The full impact of the supernova explosion is then able to impact the larger scale of the galaxy in which it abides. We conclude that supernova explosions only have moderate effects on their dense natal environments but that with pre-existing feedback, the energetic effects of the supernova are able to escape and affect the wider scale medium of the galaxy.
We revisit an alternate explanation for the turbulent nature of molecular clouds - namely, that velocity dispersions matching classical predictions of driven turbulence can be generated by the passage of clumpy material through a shock. While previous work suggested this mechanism can reproduce the observed Larson relation between velocity dispersion and size scale ($sigma propto L^{Gamma}$ with $Gamma approx 0.5$), the effects of self-gravity and magnetic fields were not considered. We run a series of smoothed particle magnetohydrodynamics experiments, passing clumpy gas through a shock in the presence of a combination of self-gravity and magnetic fields. We find powerlaw relations between $sigma$ and $L$ throughout, with indices ranging from $Gamma=0.3-1.2$. These results are relatively insensitive to the strength and geometry of magnetic fields, provided that the shock is relatively strong. $Gamma$ is strongly sensitive to the angle between the gas bulk velocity and the shock front, and the shock strength (compared to the gravitational boundness of the pre-shock gas). If the origin of the $sigma-L$ relation is in clumpy shocks, deviations from the standard Larson relation constrain the strength and behaviour of shocks in spiral galaxies.
We characterize the column density probability distributions functions (PDFs) of the atomic hydrogen gas, HI, associated with seven Galactic molecular clouds (MCs). We use 21 cm observations from the Leiden/Argentine/Bonn Galactic HI Survey to derive column density maps and PDFs. We find that the peaks of the HI PDFs occur at column densities ranging from ~1-2$times 10^{21}$ cm$^2$ (equivalently, ~0.5-1 mag). The PDFs are uniformly narrow, with a mean dispersion of $sigma_{HI}approx 10^{20}$ cm$^2$ (~0.1 mag). We also investigate the HI-to-H$_2$ transition towards the cloud complexes and estimate HI surface densities ranging from 7-16 $M_odot$ pc$^{-2}$ at the transition. We propose that the HI PDF is a fitting tool for identifying the HI-to-H$_2$ transition column in Galactic MCs.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا