It is shown that Extensive Air Shower (EAS) longitudinal development has a critical point where an equilibrium between the main hadronic component and the secondary electromagnetic one exhibits a brake. This results in a change of slope in quasi-power law function $N_{e}(Eo)$. The latter leads to a knee in the EAS size spectrum at primary energy of about 100 TeV/nucleon. Many ``strange experimental results can be successfully explained in the frames of current approach.
A large area (128 m^2) Muon Tracking Detector (MTD), located within the KASCADE experiment, has been built with the aim to identify muons (E_mu > 0.8 GeV) and their directions in extensive air showers by track measurements under more than 18 r.l. shielding. The orientation of the muon track with respect to the shower axis is expressed in terms of the radial- and tangential angles. By means of triangulation the muon production height H_mu is determined. By means of H_mu, a transition from light to heavy cosmic ray primary particle with increasing shower energy Eo from 1-10 PeV is observed. Muon pseudorapidity distributions for the first interactions above 15 km are studied and compared to Monte Carlo simulations.
Primary cosmic ray particles above energies of about 100 TeV are investigated by large-area ground based detector installations, observing various components of the development of extensive air-showers (EAS). By such an indirect access to the primary cosmic ray spectrum a steepening of the power-law falls off at around 3-5 PeV, known as the {em knee} has been identified. Different experimental techniques are used to deduce mass- and energy-sensitive observables of EAS experiments. The experiments involve measurements of secondary particle distributions at various observation levels and of muons deep underground as well as of observables reconstructed by measuring the air Cherenkov light emitted with the shower development in the atmosphere. Recently methods for analysing multidimensional distributions get favoured since they are able to take into account the correlations between different observables and the influence of large intrinsic fluctuations of the air-shower development. Additionally the use of a larger set of observables provides the possibility to test simultaneously the consistency of the Monte-Carlo models underlying the reconstruction procedures. By many experiments the existence of the knee in the primary energy spectrum is confirmed and a tendency of an increasing mean mass above the knee energy is indicated. Recent results show that the knee originates from a decrease of the flux of light primary particles, whereas heavy cosmic ray particles seem to miss a kink in the energy range of 1 and 10 PeV.
The cosmic ray flux measured by the Telescope Array Low Energy Extension (TALE) exhibits three spectral features: the knee, the dip in the $10^{16}$ eV decade, and the second knee. Here the spectrum has been measured for the first time using fluorescence telescopes, which provide a calorimetric, model-independent result. The spectrum appears to be a rigidity-dependent cutoff sequence, where the knee is made by the hydrogen and helium portions of the composition, the dip comes from the reduction in composition from helium to metals, the rise to the second knee occurs due to intermediate range nuclei, and the second knee is the iron knee.
This work is devoted to the experimental study of the longitudinal hadronic shower development in the ATLAS barrel combined prototype calorimeter consisting of the lead-liquid argon electromagnetic part and the iron-scintillator hadronic part. The results have been obtained on the basis of the 1996 combined test beam data which have been taken on the H8 beam of the CERN SPS, with the pion beams of 10, 20, 40, 50, 80, 100, 150 and 300 GeV/c. The degree of description of generally accepted Bock parameterization of the longitudinal shower development has been investigated. It is shown that this parameterization does not give satisfactory description for this combined calorimeter. Some modification of this parameterization, in which the e/h ratios of the compartments of the combined calorimeter are used, is suggested and compared with the experimental data. The agreement between such parameterization and the experimental data is demonstrated.
Starting from childhood, the human brain restructures and rewires throughout life. Characterizing such complex brain development requires effective analysis of longitudinal and multi-modal neuroimaging data. Here, we propose such an analysis approach named Longitudinal Correlation Analysis (LCA). LCA couples the data of two modalities by first reducing the input from each modality to a latent representation based on autoencoders. A self-supervised strategy then relates the two latent spaces by jointly disentangling two directions, one in each space, such that the longitudinal changes in latent representations along those directions are maximally correlated between modalities. We applied LCA to analyze the longitudinal T1-weighted and diffusion-weighted MRIs of 679 youths from the National Consortium on Alcohol and Neurodevelopment in Adolescence. Unlike existing approaches that focus on either cross-sectional or single-modal modeling, LCA successfully unraveled coupled macrostructural and microstructural brain development from morphological and diffusivity features extracted from the data. A retesting of LCA on raw 3D image volumes of those subjects successfully replicated the findings from the feature-based analysis. Lastly, the developmental effects revealed by LCA were inline with the current understanding of maturational patterns of the adolescent brain.