Do you want to publish a course? Click here

The Knee and the Second Knee of the Cosmic-Ray Energy Spectrum

90   0   0.0 ( 0 )
 Added by Tareq Abu-Zayyad
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The cosmic ray flux measured by the Telescope Array Low Energy Extension (TALE) exhibits three spectral features: the knee, the dip in the $10^{16}$ eV decade, and the second knee. Here the spectrum has been measured for the first time using fluorescence telescopes, which provide a calorimetric, model-independent result. The spectrum appears to be a rigidity-dependent cutoff sequence, where the knee is made by the hydrogen and helium portions of the composition, the dip comes from the reduction in composition from helium to metals, the rise to the second knee occurs due to intermediate range nuclei, and the second knee is the iron knee.



rate research

Read More

A hybrid experiment consisting of emulsion chambers, burst detectors and the Tibet II air-shower array was carried out at Yangbajing (4,300 m a.s.l., 606 g/cm$^2$) in Tibet to obtain the energy spectra of primary protons and heliums. From three-year operation, these energy spectra are deduced between $10^{15}$ and $10^{16}$ eV by triggering the air showers associated with a high energy core and using a neural network method in the primary mass separation. The proton spectrum can be expressed by a single power-law function with a differential index of $-3.01 pm 0.11$ and $-3.05 pm 0.12$ based on the QGSJET+HD and SIBYLL+HD models, respectively, which are steeper than that extrapolated from the direct observations of $-2.74 pm 0.01$ in the energy range below $10^{14}$ eV. The absolute fluxes of protons and heliums are derived within 30% systematic errors depending on the hadronic interaction models used in Monte Carlo simulation. The result of our experiment suggests that the main component responsible for the change of the power index of the all-particle spectrum around $3 times 10^{15}$ eV, so-called ``knee, is composed of nuclei heavier than helium. This is the first measurement of the differential energy spectra of primary protons and heliums by selecting them event by event at the knee energy region.
All information about primary cosmic rays above the knee has been obtained from results of EAS investigations. At that, two alternative approaches exist: cosmophysical and nuclear physical. In the frame of the first one, all changes in measured EAS characteristics are explained by the changes in energy spectrum and mass composition of primary cosmic rays. In this paper, the second approach is considered, in frame of which corresponding changes in EAS parameters are explained by changes of interaction model above the knee. Some experimental possibilities of proof of the correctness of the nuclear physical approach are considered.
The energy spectrum and primary composition of cosmic rays with energy between $3times 10^{14}$ and $3times10^{16}unit{eV}$ have been studied using the CASA-BLANCA detector. CASA measured the charged particle distribution of air showers, while BLANCA measured the lateral distribution of Cherenkov light. The data are interpreted using the predictions of the CORSIKA air shower simulation coupled with four different hadronic interaction codes. The differential flux of cosmic rays measured by BLANCA exhibits a knee in the range of 2--3 PeV with a width of approximately 0.5 decades in primary energy. The power law indices of the differential flux below and above the knee are $-2.72pm0.02$ and $ -2.95pm0.02$. We present our data both as a mean depth of shower maximum and as a mean nuclear mass. A multi-component fit using four elemental species shows the same composition trends given by the mean quantities, and also indicates that QGSJET and VENUS are the preferred hadronic interaction models. We find that an initially mixed composition turns lighter between 1 and 3 PeV, and then becomes heavier with increasing energy above 3 PeV.
220 - Andreas Haungs 2015
Investigations of the energy spectrum as well as the mass composition of cosmic rays in the energy range of PeVto EeV are important for understanding both, the origin of the galactic and the extragalactic cosmic rays. Recently, three modern experimental installations (KASCADE-Grande, IceTop, Tunka-133), dedicated to investigate this primary energy range, have published new results on the all-particle energy spectrum. In this short review these results are presented and the similarities and differences discussed. In addition, the effects of using different hadronic interaction models for interpreting the measured air-shower data will be examined. Finally, a brief discussion on the question if the present results are in agreement or in contradiction with astrophysical models for the transition from galactic to 10 pagesextragalactic origin of cosmic rays completes this paper.
219 - Bo Wang , Chao Fan (1 2010
The paper investigates the overall and detailed features of cosmic ray (CR) spectra in the knee region using the scenario of nuclei-photon interactions around the acceleration sources. Young supernova remnants can be the physical realities of such kind of CR acceleration sites. The results show that the model can well explain the following problems simultaneously with one set of source parameters: the knee of CR spectra and the sharpness of the knee, the detailed irregular structures of CR spectra, the so-called component B of Galactic CRs, and the electron/positron excesses reported by recent observations. The coherent explanation serves as evidence that at least a portion of CRs might be accelerated at the sources similar to young supernova remnants, and one set of source parameters indicates that this portion mainly comes from standard sources or from a single source.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا