No Arabic abstract
We report measurements of the temperature dependence of the magnetic penetration depth lambda(T) in non-centrosymmetric superconductor Re_3W. We employed two experimental techniques: extraction of lambda(T) from magnetic {em dc}-susceptibility, measured on a powder sample, and the rf tunnel diode resonator technique, where a bulk polycrystalline sample was used. The results of both techniques agree: the temperature dependence of the penetration depth can be well described by weak-coupling, dirty-limit, s-wave BCS theory where we obtain $Delta(0)/k_BT_C=1.76$. No evidence for unconventional pairing resulting from the absence of the inversion symmetry is found.
The magnetic penetration depth $lambda$ has been measured in MgCNi$_{3}$ single crystals using both a high precision Tunnel Diode Oscillator technique (TDO) and Hall probe magnetization (HPM). In striking contrast to previous measurements in powders, $deltalambda$(T) deduced from TDO measurements increases exponentially at low temperature, clearly showing that the superconducting gap is fully open over the whole Fermi surface. An absolute value at zero temperature $lambda(0)=230 $nm is found from the lower critical field measured by HPM. We also discuss the observed difference of the superfluid density deduced from both techniques. A possible explanation could be due to a systematic decrease of the critical temperature at the sample surface.
We present a comprehensive study on superconducting properties of Re$_7$B$_3$ and Re$_3$B through specific heat, magnetic susceptibility, resistivity, and transverse and zero-field muon spin rotation/relaxation ($mu$SR) experiments on polycrystalline samples. Re$_7$B$_3$ (T$_C$ = 3.2~K) is a non-centrosymmetric type-II ($kappa$ $approx$ 9.27) superconductor in the weak coupling ($lambda_{e-ph}$ = 0.54) regime. On the other hand, Re$_3$B (T$_C$ = 5.19~K) is a centrosymmetric type-II ($kappa$ $approx$ 34.55) superconductor in the moderate coupling ($lambda_{e-ph}$ = 0.64) regime. Our transverse-field $mu$SR measurements show evidence for isotropically gapped BCS type superconductivity with normalized gap ($Delta_0/k_BT_C$) values of 1.69 (Re$_7$B$_3$) and 1.75 (Re$_3$B).
The effective superconducting penetration depth measured in the vortex state of PrOs4Sb12 using transverse-field muon spin rotation (TF-muSR) exhibits an activated temperature dependence at low temperatures, consistent with a nonzero gap for quasiparticle excitations. In contrast, Meissner-state radiofrequency (rf) inductive measurements of the penetration depth yield a T^2 temperature dependence, suggestive of point nodes in the gap. A scenario based on the recent discovery of extreme two-band superconductivity in PrOs4Sb12 is proposed to resolve this difference. In this picture a large difference between large- and small-gap coherence lengths renders the field distribution in the vortex state controlled mainly by supercurrents from a fully-gapped large-gap band. In zero field all bands contribute, yielding a stronger temperature dependence to the rf inductive measurements.
The alloys of non-centrosymmetric superconductor, Re$_3$W, which were reported to have an $alpha$-Mn structure [P. Greenfield and P. A. Beck, J. Metals, N. Y. textbf{8}, 265 (1959)] with $T_mathrm{c}=9 $K were prepared by arc melting. The ac susceptibility and low-temperature specific heat were measured on these alloys. It is found that there are two superconducting phases coexisting in the samples with $T_mathrm{c1}sim9 $K and $T_mathrm{c2}sim7 $K, both of which have a non-centrosymmetric structure as reported previously. By analyzing the specific heat data measured in various magnetic fields, we found that the absence of the inversion symmetry does not lead to the deviation from a s-wave pairing symmetry in Re$_3$W.
We have measured the magnetic penetration depth of the recently discovered binary superconductor MgB_2 using muon spin rotation and low field $ac$-susceptibility. From the damping of the muon precession signal we find the penetration depth at zero temperature is about 85nm. The low temperature penetration depth shows a quadratic temperature dependence, indicating the presence of nodes in the superconducting energy gap.