No Arabic abstract
The $^{1}$H($e,e^prime pi^+$)n cross section was measured for a range of four-momentum transfer up to $Q^2$=3.91 GeV$^2$ at values of the invariant mass, $W$, above the resonance region. The $Q^2$-dependence of the longitudinal component is consistent with the $Q^2$-scaling prediction for hard exclusive processes. This suggests that perturbative QCD concepts are applicable at rather low values of $Q^2$. Pion form factor results, while consistent with the $Q^2$-scaling prediction, are inconsistent in magnitude with perturbative QCD calculations. The extraction of Generalized Parton Distributions from hard exclusive processes assumes the dominance of the longitudinal term. However, transverse contributions to the cross section are still significant at $Q^2$=3.91 GeV$^2$.
The charged pion form factor, Fpi(Q^2), is an important quantity which can be used to advance our knowledge of hadronic structure. However, the extraction of Fpi from data requires a model of the 1H(e,epi+)n reaction, and thus is inherently model dependent. Therefore, a detailed description of the extraction of the charged pion form factor from electroproduction data obtained recently at Jefferson Lab is presented, with particular focus given to the dominant uncertainties in this procedure. Results for Fpi are presented for Q^2=0.60-2.45 GeV^2. Above Q^2=1.5 GeV^2, the Fpi values are systematically below the monopole parameterization that describes the low Q^2 data used to determine the pion charge radius. The pion form factor can be calculated in a wide variety of theoretical approaches, and the experimental results are compared to a number of calculations. This comparison is helpful in understanding the role of soft versus hard contributions to hadronic structure in the intermediate Q^2 regime.
We consider the pion structure in the region of low and moderately high momentum transfers: at low $Q^2$, the pion is treated as a composite system of constituent quarks; at moderately high momentum transfers, $Q^2=10div25;GeV^2$, the pion ff is calculated within perturbative QCD taking into account one--gluon hard exchange. Using the data on pion ff at $Q^2<3;GeV^2$ and pion axial--vector decay constant, we reconstruct the pion wf in the soft and intermediate regions. This very wave function combined with one--gluon hard scattering amplitude allows a calculation of the pion ff in the hard region $Q^2=10div25;GeV^2$. A specific feature of the reconstructed pion wf is a quasi--zone character of the $qbar q$--excitations. On the basis of the obtained pion wf and the data on deep inelastic scattering off the pion, the valence quark distribution in a constituent quark is determined.
Recent BaBaR data on the pion transition form factor, whose Q^2 dependence is much steeper then predicted by asymptotic Quantum Chromodynamics (QCD), have caused a renewed interest in its theoretical description. We present here a formalism based on a model independent low energy description and a high energy description based on QCD, which match at a scale Q_0. The high energy description incorporates a flat pion distribution amplitude, phi(x)=1, at the matching scale Q_0 and QCD evolution from Q_0 to Q>Q_0. The flat pion distribution is connected, through soft pion theorems and chiral symmetry, to the pion valance parton distribution at the same low scale Q_0. The procedure leads to a good description of the data, and incorporating additional twist three effects, to an excellent description of the data.
The pion electromagnetic form factor and two-pion production in electron-positron collisions are simultaneously fitted by a vector dominance model evolving to perturbative QCD at large momentum transfer. This model was previously successful in simultaneously fitting the nucleon electromagnetic form factors (spacelike region) and the electromagnetic production of nucleon-antinucleon pairs (timelike region). For this pion case dispersion relations are used to produce the analytic connection of the spacelike and timelike regions. The fit to all the data is good, especially for the newer sets of time-like data. The description of high-$q^2$ data, in the time-like region, requires one more meson with $rho$ quantum numbers than listed in the 2014 Particle Data Group review.
A large set of cross sections for semi-inclusive electroproduction of charged pions ($pi^pm$) from both proton and deuteron targets was measured. The data are in the deep-inelastic scattering region with invariant mass squared $W^2$ > 4 GeV$^2$ and range in four-momentum transfer squared $2 < Q^2 < 4$ (GeV/c)$^2$, and cover a range in the Bjorken scaling variable 0.2 < x < 0.6. The fractional energy of the pions spans a range 0.3 < z < 1, with small transverse momenta with respect to the virtual-photon direction, $P_t^2 < 0.2$ (GeV/c)$^2$. The invariant mass that goes undetected, $M_x$ or W, is in the nucleon resonance region, W < 2 GeV. The new data conclusively show the onset of quark-hadron duality in this process, and the relation of this phenomenon to the high-energy factorization ansatz of electron-quark scattering and subsequent quark --> pion production mechanisms. The x, z and $P_t^2$ dependences of several ratios (the ratios of favored-unfavored fragmentation functions, charged pion ratios, deuteron-hydrogen and aluminum-deuteron ratios for $pi^+$ and $pi^-$) have been studied. The ratios are found to be in good agreement with expectations based upon a high-energy quark-parton model description. We find the azimuthal dependences to be small, as compared to exclusive pion electroproduction, and consistent with theoretical expectations based on tree-level factorization in terms of transverse-momentum-dependent parton distribution and fragmentation functions. In the context of a simple model, the initial transverse momenta of $d$ quarks are found to be slightly smaller than for $u$ quarks, while the transverse momentum width of the favored fragmentation function is about the same as for the unfavored one, and both fragmentation widths are larger than the quark widths.