No Arabic abstract
We consider the pion structure in the region of low and moderately high momentum transfers: at low $Q^2$, the pion is treated as a composite system of constituent quarks; at moderately high momentum transfers, $Q^2=10div25;GeV^2$, the pion ff is calculated within perturbative QCD taking into account one--gluon hard exchange. Using the data on pion ff at $Q^2<3;GeV^2$ and pion axial--vector decay constant, we reconstruct the pion wf in the soft and intermediate regions. This very wave function combined with one--gluon hard scattering amplitude allows a calculation of the pion ff in the hard region $Q^2=10div25;GeV^2$. A specific feature of the reconstructed pion wf is a quasi--zone character of the $qbar q$--excitations. On the basis of the obtained pion wf and the data on deep inelastic scattering off the pion, the valence quark distribution in a constituent quark is determined.
We examine the quark mass dependence of the pion vector form factor, particularly the curvature (mean quartic radius). We focus our study on the consequences of assuming that the coupling constant of the rho to pions is largely independent of the quark mass while the quark mass dependence of the rho--mass is given by recent lattice data. By employing the Omnes representation we can provide a very clean estimate for a certain combination of the curvature and the square radius, whose quark mass dependence could be determined from lattice computations. This study provides an independent access to the quark mass dependence of the rho-pi-pi coupling and in this way a non-trivial check of the systematics of chiral extrapolations. We also provide an improved value for the curvature for physical values for the quark masses, namely <r^4> = 0.73 +- 0.09 fm^4 or equivalently c_V=4.00pm 0.50 GeV^{-4}.
The pion electromagnetic form factor and two-pion production in electron-positron collisions are simultaneously fitted by a vector dominance model evolving to perturbative QCD at large momentum transfer. This model was previously successful in simultaneously fitting the nucleon electromagnetic form factors (spacelike region) and the electromagnetic production of nucleon-antinucleon pairs (timelike region). For this pion case dispersion relations are used to produce the analytic connection of the spacelike and timelike regions. The fit to all the data is good, especially for the newer sets of time-like data. The description of high-$q^2$ data, in the time-like region, requires one more meson with $rho$ quantum numbers than listed in the 2014 Particle Data Group review.
Recent BaBaR data on the pion transition form factor, whose Q^2 dependence is much steeper then predicted by asymptotic Quantum Chromodynamics (QCD), have caused a renewed interest in its theoretical description. We present here a formalism based on a model independent low energy description and a high energy description based on QCD, which match at a scale Q_0. The high energy description incorporates a flat pion distribution amplitude, phi(x)=1, at the matching scale Q_0 and QCD evolution from Q_0 to Q>Q_0. The flat pion distribution is connected, through soft pion theorems and chiral symmetry, to the pion valance parton distribution at the same low scale Q_0. The procedure leads to a good description of the data, and incorporating additional twist three effects, to an excellent description of the data.
We study the pion Distribution Amplitude (pi DA) in the context of a nonlocal chiral quark model. The corresponding Lagrangian reproduces the phenomenological values of the pion mass and decay constant, as well as the momentum dependence of the quark propagator obtained in lattice calculations. It is found that the obtained pi DA has two symmetric maxima, which arise from the new contributions generated by the nonlocal character of the interactions. This pi DA is applied to leading order and next-to-leading order calculations of the pion-photon transition form factor. Implications of the results are discussed.
We report on a program to compute the electromagnetic form factors of mesons. We discuss the techniques used to compute the pion form factor and present results computed with domain wall valence fermions on MILC asqtad lattices, as well as with Wilson fermions on quenched lattices. The methods can easily be extended to rho-to-gamma-pi transition form factors.