No Arabic abstract
A combined experimental and computational investigation of coupling between polarization and epitaxial strain in highly polar ferroelectric PbZr_0.2Ti_0.8O_3 (PZT) thin films is reported. A comparison of the properties of relaxed (tetragonality c/a = 1.05) and highly-strained (c/a = 1.09) epitaxial films shows that polarization, while being amongst the highest reported for PZT or PbTiO_3 in either film or bulk forms (P_r = 82 microC/cm^2), is almost independent of the epitaxial strain. We attribute this behavior to a suppressed sensitivity of the A-site cations to epitaxial strain in these Pb-based perovskites, where the ferroelectric displacements are already large, contrary to the case of less polar perovskites, such as BaTiO_3. In the latter case, the A-site cation (Ba) and equatorial oxygen displacements can lead to substantial polarization increases.
Epitaxial strain plays an important role in determining physical properties of perovskite ferroelectric oxide thin films. However, it is very challenging to directly measure properties such as polarization in ultrathin strained films using traditional sandwich capacitor devices, because of high leakage current. We employed a planar electrode device with different crystallographical orientations between electrodes along different electric field orientation to directly measure the in-plane polarization-electric field (P-E) hysteresis loops in fully strained thin films. At high misfit strains such as -4.4%, the pure Tetrogonal-like phase is obtained and its polarization vector is constrained to lie in the (010) plane with a significantly large in-plane component, ~44 {mu}C/cm2. First-principle calculations are carried out in parallel, and provide a good agreement with the experimental results. Our results pave the way to design in-plane devices based on T-like BFO and the strategy proposed here can be expanded to study all other similar strained multiferroic ultrathin films.
The $phi(kpp)sim kpp$ relation is called polarization structure. By density functional calculations, we study the polarization structure in ferroelectric perovskite PbTiO$_3$, revealing (1) the $kpp$ point that contributes most to the electronic polarization, (2) the magnitude of bandwidth, and (3) subtle curvature of polarization dispersion. We also investigate how polarization structure in PbTiO$_3$ is modified by compressive inplane strains. The bandwidth of polarization dispersion in PbTiO$_3$ is shown to exhibit an unusual decline, though the total polarization is enhanced. As another outcome of this study, we formulate an analytical scheme for the purpose of identifying what determine the polarization structure at arbitrary $kpp$ points by means of Wannier functions. We find that $phi(kpp)$ is determined by two competing factors: one is the overlaps between neighboring Wannier functions within the plane {it perpendicular} to the polarization direction, and the other is the localization length {it parallel} to the polarization direction. Inplane strain increases the former while decreases the latter, causing interesting non-monotonous effects on polarization structure. Finally, polarization dispersion in another paradigm ferroelectric BaTiO$_3$ is discussed and compared with that of PbTiO$_3$.
Using density-functional calculations we study the structure and polarization response of tetragonal PbTiO3, BaTiO3 and SrTiO3 in a strain regime that is previously overlooked. Different from common expectations, we find that the polarizations in all three substances saturate at large strains, demonstrating a universal phenomenon. The saturation is shown to originate from an unusual and strong electron-ion correlation that leads to cancellation between electronic and ionic polarizations. Our results shed new insight on the polarization properties, and reveal the existence of a fundamental limit to the strain-induced polarization enhancement.
Ferroelectric BaTiO3 films with large polarization have been integrated with Si(001) by pulsed laser deposition. High quality c-oriented epitaxial films are obtained in a substrate temperature range of about 300 deg C wide. The deposition temperature critically affects the growth kinetics and thermodynamics balance, resulting on a high impact in the strain of the BaTiO3 polar axis, which can exceed 2% in films thicker than 100 nm. The ferroelectric polarization scales with the strain and therefore deposition temperature can be used as an efficient tool to tailor ferroelectric polarization. The developed strategy overcomes the main limitations of the conventional strain engineering methodologies based on substrate selection: it can be applied to films on specific substrates including Si(001) and perovskites, and it is not restricted to ultrathin films.
Using a Ginzburg--Landau--Devonshire model that includes the coupling of polarization to strain, we calculate the fluctuation spectra of ferroelectric domain walls. The influence of the strain coupling differs between 180 degree and 90 degree walls due to the different strain profiles of the two configurations. The finite speed of acoustic phonons, $v_s$, retards the response of the strain to polarization fluctuations, and the results depend on $v_s$. For $v_s to infty$, the strain mediates an instantaneous electrostrictive interaction, which is long-range in the 90 degree wall case. For finite $v_s$, acoustic phonons damp the wall excitations, producing a continuum in the spectral function. As $v_s to 0$, a gapped mode emerges, which corresponds to the polarization oscillating in a fixed strain potential.