Do you want to publish a course? Click here

Evidence for a planetary companion around a nearby young star

139   0   0.0 ( 0 )
 Added by Jens Rodmann
 Publication date 2007
  fields Physics
and research's language is English
 Authors J. Setiawan




Ask ChatGPT about the research

We report evidence for a planetary companion around the nearby young star HD 70573. The star is a G type dwarf located at a distance of 46 pc with age estimation between 20 and 300 Myrs. We carried out spectroscopic observations of this star with FEROS at the 2.2 m MPG/ESO telescope at La Silla. Our spectroscopic analysis yields a spectral type of G1-1.5V and an age of about 100 Myrs. Variations in stellar radial velocity of HD 70573 have been monitored since December 2003 until January 2007. The velocity accuracy of FEROS within this period is about 10 m/s. HD 70573 shows a radial velocity variation with a period of 852 +/- 12 days and a semi-amplitude of 149 +/- 6 m/s. The period of this variation is significantly longer than its rotational period, which is 3.3 days. Based on the analysis of the Ca II K emission line, Halpha and Teff variation as stellar activity indicators as well as the lack of a correlation between the bisector velocity span and the radial velocity, we can exclude the rotational modulation and non-radial pulsations as the source of the long-period radial velocity variation. Thus, the presence of a low-mass companion around the star provides the best explanation for the observed radial velocity variation. Assuming a primary mass m1=1.0 +/- 0.1 Msun for the host star, we calculated a minimum mass of the companion m2sini of 6.1 Mjup, which lies in the planetary mass regime, and an orbital semi-major axis of 1.76 AU. The orbit of the planet has an eccentricity of e=0.4. The planet discovery around the young star HD 70573 gives an important input for the study of debris disks around young stars and their relation to the presence of planets.



rate research

Read More

215 - Niall R Deacon 2016
We present the identification of two previously known young objects in the solar neighbourhood as a likely very wide binary. TYC 9486-927-1, an active, rapidly rotating early-M dwarf, and 2MASS J21265040-8140293, a low-gravity L3 dwarf previously identified as candidate members of the $sim$45 Myr old Tucana Horologium association (TucHor). An updated proper motion measurement of the L3 secondary, and a detailed analysis of the pairs kinematics in the context of known nearby, young stars, reveals that they share common proper motion and are likely bound. New observations and analyses reveal the primary exhibits Li 6708~AA~absorption consistent with M dwarfs younger than TucHor but older than the $sim$10 Myr TW Hydra association yielding an age range of 10-45 Myr. A revised kinematic analysis suggests the space motions and positions of the pair are closer to, but not entirely in agreement with, the $sim$24 Myr old $beta$ Pictoris moving group. This revised 10-45 Myr age range yields a mass range of 11.6--15 M$_J$ for the secondary. It is thus likely 2MASS J21265040-8140293short is the widest orbit planetary mass object known ($>$4500AU) and its estimated mass, age, spectral type, and $T_{eff}$ are similar to the well-studied planet $beta$ Pictoris b. Because of their extreme separation and youth, this low-mass pair provide an interesting case study for very wide binary formation and evolution.
105 - Inwoo Han , B. C. Lee , K. M. Kim 2009
Aims: Our primary goal is to search for planets around intermediate mass stars. We are also interested in studying the nature of radial velocity (RV) variations of K giant stars. Methods: We selected about 55 early K giant (K0 - K4) stars brighter than fifth magnitude that were observed using BOES, a high resolution spectrograph attached to the 1.8 m telescope at BOAO (Bohyunsan Optical Astronomy Observatory). BOES is equipped with $I_2$ absorption cell for high precision RV measurements. Results: We detected a periodic radial velocity variations in the K0 III star gam1leo with a period of P = 429 days. An orbital fit of the observed RVs yields a period of P = 429 days, a semi-amplitude of K = 208 mps, and an eccentricity of e = 0.14. To investigate the nature of the RV variations, we analyzed the photometric, CaII $lambda$ 8662 equivalent width, and line-bisector variations of gam1leo. We conclude that the detected RV variations can be best explained by a planetary companion with an estimated mass of m $sin i = 8.78 M_{Jupiter}$ and a semi-major axis of $a = 1.19$ AU, assuming a stellar mass of 1.23 Msun.
We present the discovery of a co-moving planetary-mass companion ~42 (~2000 AU) from a young M3 star, GU Psc, likely member of the young AB Doradus Moving Group (ABDMG). The companion was first identified via its distinctively red i - z color (> 3.5) through a survey made with Gemini-S/GMOS. Follow-up Canada-France-Hawaii Telescope/WIRCam near-infrared (NIR) imaging, Gemini-N/GNIRS NIR spectroscopy and Wide-field Infrared Survey Explorer photometry indicate a spectral type of T3.5+-1 and reveal signs of low gravity which we attribute to youth. Keck/Adaptive Optics NIR observations did not resolve the companion as a binary. A comparison with atmosphere models indicates Teff = 1000-1100 K and logg = 4.5-5.0. Based on evolution models, this temperature corresponds to a mass of 9-13 MJup for the age of ABDMG (70-130 Myr). The relatively well-constrained age of this companion and its very large angular separation to its host star will allow its thorough characterization and will make it a valuable comparison for planetary-mass companions that will be uncovered by forthcoming planet-finder instruments such as Gemini Planet Imager and SPHERE.
Radial velocity (RV) searches for exoplanets have surveyed many of the nearest and brightest stars for long-term velocity variations indicative of a companion body. Such surveys often detect high-amplitude velocity signatures of objects that lie outside the planetary mass regime, most commonly those of a low-mass star. Such stellar companions are frequently discarded as false-alarms to the main science goals of the survey, but high-resolution imaging techniques can be employed to either directly detect or place significant constraints on the nature of the companion object. Here, we present the discovery of a compact companion to the nearby star HD~118475. Our Anglo-Australian Telescope (AAT) RV data allow the extraction of the full Keplerian orbit of the companion, found to have a minimum mass of 0.445~$M_odot$. Follow-up speckle imaging observations at the predicted time of maximum angular separation rule out a main sequence star as the source of the RV signature at the 3.3$sigma$ significance level, implying that the companion must be a low-luminosity compact object, most likely a white dwarf. We provide an isochrone analysis combined with our data that constrain the possible inclinations of the binary orbit. We discuss the eccentric orbit of the companion in the context of tidal circularization timescales and show that non-circular orbit was likely inherited from the progenitor. Finally, we emphasize the need for utilizing such an observation method to further understand the demographics of white dwarf companions around nearby stars.
Young nearby stars are good candidates in the search for planets with both radial velocity (RV) and direct imaging techniques. This, in turn, allows for the computation of the giant planet occurrence rates at all separations. The RV search around young stars is a challenge as they are generally faster rotators than older stars of similar spectral types and they exhibit signatures of magnetic activity (spots) or pulsation in their RV time series. Specific analyses are necessary to characterize, and possibly correct for, this activity. Our aim is to search for planets around young nearby stars and to estimate the giant planet (GP) occurrence rates for periods up to 1000 days. We used the HARPS spectrograph on the 3.6m telescope at La Silla Observatory to observe 89 A-M young (< 600 Myr) stars. We used our SAFIR (Spectroscopic data via Analysis of the Fourier Interspectrum Radial velocities ) software to compute the RV and other spectroscopic observables. Then, we computed the companion occurrence rates on this sample. We confirm the binary nature of HD177171, HD181321 and HD186704. We report the detection of a close low mass stellar companion for HIP36985. No planetary companion was detected. We obtain upper limits on the GP (< 13 MJup) and BD (13-80 MJup) occurrence rates based on 83 young stars for periods less than 1000 days, which are set, 2_-2^+3 % and 1_-1^+3 %.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا