Do you want to publish a course? Click here

Perceived and Intended Sarcasm Detection with Graph Attention Networks

اكتشاف السخرية المتصورة والمقصودة مع شبكات انتباه الرسوم البيانية

422   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Existing sarcasm detection systems focus on exploiting linguistic markers, context, or user-level priors. However, social studies suggest that the relationship between the author and the audience can be equally relevant for the sarcasm usage and interpretation. In this work, we propose a framework jointly leveraging (1) a user context from their historical tweets together with (2) the social information from a user's neighborhood in an interaction graph, to contextualize the interpretation of the post. We distinguish between perceived and self-reported sarcasm identification. We use graph attention networks (GAT) over users and tweets in a conversation thread, combined with various dense user history representations. Apart from achieving state-of-the-art results on the recently published dataset of 19k Twitter users with 30K labeled tweets, adding 10M unlabeled tweets as context, our experiments indicate that the graph network contributes to interpreting the sarcastic intentions of the author more than to predicting the sarcasm perception by others.



References used
https://aclanthology.org/
rate research

Read More

Existing sarcasm detection systems focus on exploiting linguistic markers, context, or user-level priors. However, social studies suggest that the relationship between the author and the audience can be equally relevant for the sarcasm usage and inte rpretation. In this work, we propose a framework jointly leveraging (1) a user context from their historical tweets together with (2) the social information from a user's conversational neighborhood in an interaction graph, to contextualize the interpretation of the post. We use graph attention networks (GAT) over users and tweets in a conversation thread, combined with dense user history representations. Apart from achieving state-of-the-art results on the recently published dataset of 19k Twitter users with 30K labeled tweets, adding 10M unlabeled tweets as context, our results indicate that the model contributes to interpreting the sarcastic intentions of an author more than to predicting the sarcasm perception by others.
Recent progress in pretrained Transformer-based language models has shown great success in learning contextual representation of text. However, due to the quadratic self-attention complexity, most of the pretrained Transformers models can only handle relatively short text. It is still a challenge when it comes to modeling very long documents. In this work, we propose to use a graph attention network on top of the available pretrained Transformers model to learn document embeddings. This graph attention network allows us to leverage the high-level semantic structure of the document. In addition, based on our graph document model, we design a simple contrastive learning strategy to pretrain our models on a large amount of unlabeled corpus. Empirically, we demonstrate the effectiveness of our approaches in document classification and document retrieval tasks.
External syntactic and semantic information has been largely ignored by existing neural coreference resolution models. In this paper, we present a heterogeneous graph-based model to incorporate syntactic and semantic structures of sentences. The prop osed graph contains a syntactic sub-graph where tokens are connected based on a dependency tree, and a semantic sub-graph that contains arguments and predicates as nodes and semantic role labels as edges. By applying a graph attention network, we can obtain syntactically and semantically augmented word representation, which can be integrated using an attentive integration layer and gating mechanism. Experiments on the OntoNotes 5.0 benchmark show the effectiveness of our proposed model.
Event detection (ED) task aims to classify events by identifying key event trigger words embedded in a piece of text. Previous research have proved the validity of fusing syntactic dependency relations into Graph Convolutional Networks(GCN). While ex isting GCN-based methods explore latent node-to-node dependency relations according to a stationary adjacency tensor, an attention-based dynamic tensor, which can pay much attention to the key node like event trigger or its neighboring nodes, has not been developed. Simultaneously, suffering from the phenomenon of graph information vanishing caused by the symmetric adjacency tensor, existing GCN models can not achieve higher overall performance. In this paper, we propose a novel model Self-Attention Graph Residual Convolution Networks (SA-GRCN) to mine node-to-node latent dependency relations via self-attention mechanism and introduce Graph Residual Network (GResNet) to solve graph information vanishing problem. Specifically, a self-attention module is constructed to generate an attention tensor, representing the dependency attention scores of all words in the sentence. Furthermore, a graph residual term is added to the baseline SA-GCN to construct a GResNet. Considering the syntactically connection of the network input, we initialize the raw adjacency tensor without processed by the self-attention module as the residual term. We conduct experiments on the ACE2005 dataset and the results show significant improvement over competitive baseline methods.
Sarcasm is a linguistic expression often used to communicate the opposite of what is said, usually something that is very unpleasant with an intention to insult or ridicule. Inherent ambiguity in sarcastic expressions makes sarcasm detection very dif ficult. In this work, we focus on detecting sarcasm in textual conversations, written in English, from various social networking platforms and online media. To this end, we develop an interpretable deep learning model using multi-head self-attention and gated recurrent units. We show the effectiveness and interpretability of our approach by achieving state-of-the-art results on datasets from social networking platforms, online discussion forums, and political dialogues.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا