Do you want to publish a course? Click here

Perceived and Intended Sarcasm Detection with Graph Attention Networks

اكتشاف السخرية المتصورة والمقصودة مع شبكات انتباه الرسوم البيانية

100   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Existing sarcasm detection systems focus on exploiting linguistic markers, context, or user-level priors. However, social studies suggest that the relationship between the author and the audience can be equally relevant for the sarcasm usage and interpretation. In this work, we propose a framework jointly leveraging (1) a user context from their historical tweets together with (2) the social information from a user's neighborhood in an interaction graph, to contextualize the interpretation of the post. We distinguish between perceived and self-reported sarcasm identification. We use graph attention networks (GAT) over users and tweets in a conversation thread, combined with various dense user history representations. Apart from achieving state-of-the-art results on the recently published dataset of 19k Twitter users with 30K labeled tweets, adding 10M unlabeled tweets as context, our experiments indicate that the graph network contributes to interpreting the sarcastic intentions of the author more than to predicting the sarcasm perception by others.

References used
https://aclanthology.org/
rate research

Read More

Variational autoencoders have been studied as a promising approach to model one-to-many mappings from context to response in chat response generation. However, they often fail to learn proper mappings. One of the reasons for this failure is the discr epancy between a response and a latent variable sampled from an approximated distribution in training. Inappropriately sampled latent variables hinder models from constructing a modulated latent space. As a result, the models stop handling uncertainty in conversations. To resolve that, we propose speculative sampling of latent variables. Our method chooses the most probable one from redundantly sampled latent variables for tying up the variable with a given response. We confirm the efficacy of our method in response generation with massive dialogue data constructed from Twitter posts.
Hateful memes pose a unique challenge for current machine learning systems because their message is derived from both text- and visual-modalities. To this effect, Facebook released the Hateful Memes Challenge, a dataset of memes with pre-extracted te xt captions, but it is unclear whether these synthetic examples generalize to memes in the wild'. In this paper, we collect hateful and non-hateful memes from Pinterest to evaluate out-of-sample performance on models pre-trained on the Facebook dataset. We find that memes in the wild' differ in two key aspects: 1) Captions must be extracted via OCR, injecting noise and diminishing performance of multimodal models, and 2) Memes are more diverse than traditional memes', including screenshots of conversations or text on a plain background. This paper thus serves as a reality-check for the current benchmark of hateful meme detection and its applicability for detecting real world hate.
We introduce HateBERT, a re-trained BERT model for abusive language detection in English. The model was trained on RAL-E, a large-scale dataset of Reddit comments in English from communities banned for being offensive, abusive, or hateful that we hav e curated and made available to the public. We present the results of a detailed comparison between a general pre-trained language model and the retrained version on three English datasets for offensive, abusive language and hate speech detection tasks. In all datasets, HateBERT outperforms the corresponding general BERT model. We also discuss a battery of experiments comparing the portability of the fine-tuned models across the datasets, suggesting that portability is affected by compatibility of the annotated phenomena.
Hate speech and profanity detection suffer from data sparsity, especially for languages other than English, due to the subjective nature of the tasks and the resulting annotation incompatibility of existing corpora. In this study, we identify profane subspaces in word and sentence representations and explore their generalization capability on a variety of similar and distant target tasks in a zero-shot setting. This is done monolingually (German) and cross-lingually to closely-related (English), distantly-related (French) and non-related (Arabic) tasks. We observe that, on both similar and distant target tasks and across all languages, the subspace-based representations transfer more effectively than standard BERT representations in the zero-shot setting, with improvements between F1 +10.9 and F1 +42.9 over the baselines across all tested monolingual and cross-lingual scenarios.
Offensive language detection (OLD) has received increasing attention due to its societal impact. Recent work shows that bidirectional transformer based methods obtain impressive performance on OLD. However, such methods usually rely on large-scale we ll-labeled OLD datasets for model training. To address the issue of data/label scarcity in OLD, in this paper, we propose a simple yet effective domain adaptation approach to train bidirectional transformers. Our approach introduces domain adaptation (DA) training procedures to ALBERT, such that it can effectively exploit auxiliary data from source domains to improve the OLD performance in a target domain. Experimental results on benchmark datasets show that our approach, ALBERT (DA), obtains the state-of-the-art performance in most cases. Particularly, our approach significantly benefits underrepresented and under-performing classes, with a significant improvement over ALBERT.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا