Do you want to publish a course? Click here

MOMENTA: A Multimodal Framework for Detecting Harmful Memes and Their Targets

Momenta: إطار متعدد الوسائط للكشف عن الميمات الضارة وأهدافها

656   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Internet memes have become powerful means to transmit political, psychological, and socio-cultural ideas. Although memes are typically humorous, recent days have witnessed an escalation of harmful memes used for trolling, cyberbullying, and abuse. Detecting such memes is challenging as they can be highly satirical and cryptic. Moreover, while previous work has focused on specific aspects of memes such as hate speech and propaganda, there has been little work on harm in general. Here, we aim to bridge this gap. In particular, we focus on two tasks: (i)detecting harmful memes, and (ii) identifying the social entities they target. We further extend the recently released HarMeme dataset, which covered COVID-19, with additional memes and a new topic: US politics. To solve these tasks, we propose MOMENTA (MultimOdal framework for detecting harmful MemEs aNd Their tArgets), a novel multimodal deep neural network that uses global and local perspectives to detect harmful memes. MOMENTA systematically analyzes the local and the global perspective of the input meme (in both modalities) and relates it to the background context. MOMENTA is interpretable and generalizable, and our experiments show that it outperforms several strong rivaling approaches.



References used
https://aclanthology.org/
rate research

Read More

Large-scale multi-modal classification aim to distinguish between different multi-modal data, and it has drawn dramatically attentions since last decade. In this paper, we propose a multi-task learning-based framework for the multimodal classificatio n task, which consists of two branches: multi-modal autoencoder branch and attention-based multi-modal modeling branch. Multi-modal autoencoder can receive multi-modal features and obtain the interactive information which called multi-modal encoder feature, and use this feature to reconstitute all the input data. Besides, multi-modal encoder feature can be used to enrich the raw dataset, and improve the performance of downstream tasks (such as classification task). As for attention-based multimodal modeling branch, we first employ attention mechanism to make the model focused on important features, then we use the multi-modal encoder feature to enrich the input information, achieve a better performance. We conduct extensive experiments on different dataset, the results demonstrate the effectiveness of proposed framework.
This paper describes our submission (winning solution for Task A) to the Shared Task on Hateful Meme Detection at WOAH 2021. We build our system on top of a state-of-the-art system for binary hateful meme classification that already uses image tags s uch as race, gender, and web entities. We add further metadata such as emotions and experiment with data augmentation techniques, as hateful instances are underrepresented in the data set.
In recent years, the widespread use of social media has led to an increase in the generation of toxic and offensive content on online platforms. In response, social media platforms have worked on developing automatic detection methods and employing h uman moderators to cope with this deluge of offensive content. While various state-of-the-art statistical models have been applied to detect toxic posts, there are only a few studies that focus on detecting the words or expressions that make a post offensive. This motivates the organization of the SemEval-2021 Task 5: Toxic Spans Detection competition, which has provided participants with a dataset containing toxic spans annotation in English posts. In this paper, we present the WLV-RIT entry for the SemEval-2021 Task 5. Our best performing neural transformer model achieves an 0.68 F1-Score. Furthermore, we develop an open-source framework for multilingual detection of offensive spans, i.e., MUDES, based on neural transformers that detect toxic spans in texts.
Social media is an essential tool to share information about crisis events, such as natural disasters. Event Detection aims at extracting information in the form of an event, but considers each event in isolation, without combining information across sentences or events. Many posts in Crisis NLP contain repetitive or complementary information which needs to be aggregated (e.g., the number of trapped people and their location) for disaster response. Although previous approaches in Crisis NLP aggregate information across posts, they only use shallow representations of the content (e.g., keywords), which cannot adequately represent the semantics of a crisis event and its sub-events. In this work, we propose a novel framework to extract critical sub-events from a large-scale crisis event by combining important information across relevant tweets. Our framework first converts all the tweets from a crisis event into a temporally-ordered set of graphs. Then it extracts sub-graphs that represent semantic relationships connecting verbs and nouns in 3 to 6 node sub-graphs. It does this by learning edge weights via Dynamic Graph Convolutional Networks (DGCNs) and extracting smaller, relevant sub-graphs. Our experiments show that our extracted structures (1) are semantically meaningful sub-events and (2) contain information important for the large crisis-event. Furthermore, we show that our approach significantly outperforms event detection baselines, highlighting the importance of aggregating information across tweets for our task.
In this work we leverage commonsense knowledge in form of knowledge paths to establish connections between sentences, as a form of explicitation of implicit knowledge. Such connections can be direct (singlehop paths) or require intermediate concepts (multihop paths). To construct such paths we combine two model types in a joint framework we call Co-nnect: a relation classifier that predicts direct connections between concepts; and a target prediction model that generates target or intermediate concepts given a source concept and a relation, which we use to construct multihop paths. Unlike prior work that relies exclusively on static knowledge sources, we leverage language models finetuned on knowledge stored in ConceptNet, to dynamically generate knowledge paths, as explanations of implicit knowledge that connects sentences in texts. As a central contribution we design manual and automatic evaluation settings for assessing the quality of the generated paths. We conduct evaluations on two argumentative datasets and show that a combination of the two model types generates meaningful, high-quality knowledge paths between sentences that reveal implicit knowledge conveyed in text.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا