Do you want to publish a course? Click here

Disentangling Generative Factors in Natural Language with Discrete Variational Autoencoders

تحرير العوامل الولادة باللغة الطبيعية مع السيارات الباخرة المنفصلة

180   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

The ability of learning disentangled representations represents a major step for interpretable NLP systems as it allows latent linguistic features to be controlled. Most approaches to disentanglement rely on continuous variables, both for images and text. We argue that despite being suitable for image datasets, continuous variables may not be ideal to model features of textual data, due to the fact that most generative factors in text are discrete. We propose a Variational Autoencoder based method which models language features as discrete variables and encourages independence between variables for learning disentangled representations. The proposed model outperforms continuous and discrete baselines on several qualitative and quantitative benchmarks for disentanglement as well as on a text style transfer downstream application.

References used
https://aclanthology.org/
rate research

Read More

Text variational autoencoders (VAEs) are notorious for posterior collapse, a phenomenon where the model's decoder learns to ignore signals from the encoder. Because posterior collapse is known to be exacerbated by expressive decoders, Transformers ha ve seen limited adoption as components of text VAEs. Existing studies that incorporate Transformers into text VAEs (Li et al., 2020; Fang et al., 2021) mitigate posterior collapse using massive pretraining, a technique unavailable to most of the research community without extensive computing resources. We present a simple two-phase training scheme to convert a sequence-to-sequence Transformer into a VAE with just finetuning. The resulting language model is competitive with massively pretrained Transformer-based VAEs in some internal metrics while falling short on others. To facilitate training we comprehensively explore the impact of common posterior collapse alleviation techniques in the literature. We release our code for reproducability.
Given an untrimmed video and a natural language query, Natural Language Video Localization (NLVL) aims to identify the video moment described by query. To address this task, existing methods can be roughly grouped into two groups: 1) propose-and-rank models first define a set of hand-designed moment candidates and then find out the best-matching one. 2) proposal-free models directly predict two temporal boundaries of the referential moment from frames. Currently, almost all the propose-and-rank methods have inferior performance than proposal-free counterparts. In this paper, we argue that the performance of propose-and-rank models are underestimated due to the predefined manners: 1) Hand-designed rules are hard to guarantee the complete coverage of targeted segments. 2) Densely sampled candidate moments cause redundant computation and degrade the performance of ranking process. To this end, we propose a novel model termed LPNet (Learnable Proposal Network for NLVL) with a fixed set of learnable moment proposals. The position and length of these proposals are dynamically adjusted during training process. Moreover, a boundary-aware loss has been proposed to leverage frame-level information and further improve performance. Extensive ablations on two challenging NLVL benchmarks have demonstrated the effectiveness of LPNet over existing state-of-the-art methods.
Deep learning (DL) based language models achieve high performance on various benchmarks for Natural Language Inference (NLI). And at this time, symbolic approaches to NLI are receiving less attention. Both approaches (symbolic and DL) have their adva ntages and weaknesses. However, currently, no method combines them in a system to solve the task of NLI. To merge symbolic and deep learning methods, we propose an inference framework called NeuralLog, which utilizes both a monotonicity-based logical inference engine and a neural network language model for phrase alignment. Our framework models the NLI task as a classic search problem and uses the beam search algorithm to search for optimal inference paths. Experiments show that our joint logic and neural inference system improves accuracy on the NLI task and can achieve state-of-art accuracy on the SICK and MED datasets.
Variational autoencoders have been studied as a promising approach to model one-to-many mappings from context to response in chat response generation. However, they often fail to learn proper mappings. One of the reasons for this failure is the discr epancy between a response and a latent variable sampled from an approximated distribution in training. Inappropriately sampled latent variables hinder models from constructing a modulated latent space. As a result, the models stop handling uncertainty in conversations. To resolve that, we propose speculative sampling of latent variables. Our method chooses the most probable one from redundantly sampled latent variables for tying up the variable with a given response. We confirm the efficacy of our method in response generation with massive dialogue data constructed from Twitter posts.
It has been long known that sparsity is an effective inductive bias for learning efficient representation of data in vectors with fixed dimensionality, and it has been explored in many areas of representation learning. Of particular interest to this work is the investigation of the sparsity within the VAE framework which has been explored a lot in the image domain, but has been lacking even a basic level of exploration in NLP. Additionally, NLP is also lagging behind in terms of learning sparse representations of large units of text e.g., sentences. We use the VAEs that induce sparse latent representations of large units of text to address the aforementioned shortcomings. First, we move in this direction by measuring the success of unsupervised state-of-the-art (SOTA) and other strong VAE-based sparsification baselines for text and propose a hierarchical sparse VAE model to address the stability issue of SOTA. Then, we look at the implications of sparsity on text classification across 3 datasets, and highlight a link between performance of sparse latent representations on downstream tasks and its ability to encode task-related information.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا