تهدف مهمة الكشف عن الموقف إلى اكتشاف موقف سقسقة أو نص للحصول على هدف. يمكن تسمية هذه الأهداف كيانات أو جمل حرة (مطالبات). على الرغم من أن المهمة تنطوي على سبب سقسقة فيما يتعلق بهدف، إلا أننا نجد أنه من الممكن تحقيق دقة عالية على العديد من مجموعات بيانات الكشف عن موقف تويتر المتوفرة علنا دون النظر إلى الجملة المستهدفة. على وجه التحديد، حقق نموذج تصنيف Tweet بسيط أداء على مستوى بشري على مجموعة بيانات WT - WT وأكثر من دقة ثالثة في مختلف مجموعات البيانات الأخرى. نحن نبحث في وجود تحيزات في مثل هذه البيانات للعثور على الارتباطات الزائفة المحتملة لعلاقات موقد المعنويات والاختيار المعجمي المرتبط بفئة الموقف. علاوة على ذلك، نقترح مجموعة بيانات كبيرة جديدة خالية من هذه التحيزات وإظهار ملصفها على أنظمة الكشف عن الموقف الموجودة. تظهر نتائجنا التجريبية نطاقا كبيرا للبحث عن مهمة الكشف عن الموقف ويقترح العديد من الاعتبارات لإنشاء مجموعات بيانات الكشف عن الموقف في المستقبل.
The stance detection task aims at detecting the stance of a tweet or a text for a target. These targets can be named entities or free-form sentences (claims). Though the task involves reasoning of the tweet with respect to a target, we find that it is possible to achieve high accuracy on several publicly available Twitter stance detection datasets without looking at the target sentence. Specifically, a simple tweet classification model achieved human-level performance on the WT--WT dataset and more than two-third accuracy on various other datasets. We investigate the existence of biases in such datasets to find the potential spurious correlations of sentiment-stance relations and lexical choice associated with the stance category. Furthermore, we propose a new large dataset free of such biases and demonstrate its aptness on the existing stance detection systems. Our empirical findings show much scope for research on the stance detection task and proposes several considerations for creating future stance detection datasets.
References used
https://aclanthology.org/
In Romanian language there are some resources for automatic text comprehension, but for Emotion Detection, not lexicon-based, there are none. To cover this gap, we extracted data from Twitter and created the first dataset containing tweets annotated
We present DreamDrug, a crowdsourced dataset for detecting mentions of drugs in noisy user-generated item listings from darknet markets. Our dataset contains nearly 15,000 manually annotated drug entities in over 3,500 item listings scraped from the
In this paper, we present NEREL, a Russian dataset for named entity recognition and relation extraction. NEREL is significantly larger than existing Russian datasets: to date it contains 56K annotated named entities and 39K annotated relations. Its i
The goal of stance detection is to identify whether the author of a text is in favor of, neutral or against a specific target. Despite substantial progress on this task, one of the remaining challenges is the scarcity of annotations. Data augmentatio
Online abuse and offensive language on social media have become widespread problems in today's digital age. In this paper, we contribute a Reddit-based dataset, consisting of 68,159 insults and 51,102 compliments targeted at individuals instead of ta