Do you want to publish a course? Click here

Multi-label Diagnosis Classification of Swedish Discharge Summaries -- ICD-10 Code Assignment Using KB-BERT

تصنيف التشخيص متعدد التسميات الملخصات السويدية للتصوير - ICD-10 تعيين رمز باستخدام KB-Bert

554   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

The International Classification of Diseases (ICD) is a system for systematically recording patients' diagnoses. Clinicians or professional coders assign ICD codes to patients' medical records to facilitate funding, research, and administration. In most health facilities, clinical coding is a manual, time-demanding task that is prone to errors. A tool that automatically assigns ICD codes to free-text clinical notes could save time and reduce erroneous coding. While many previous studies have focused on ICD coding, research on Swedish patient records is scarce. This study explored different approaches to pairing Swedish clinical notes with ICD codes. KB-BERT, a BERT model pre-trained on Swedish text, was compared to the traditional supervised learning models Support Vector Machines, Decision Trees, and K-nearest Neighbours used as the baseline. When considering ICD codes grouped into ten blocks, the KB-BERT was superior to the baseline models, obtaining an F1-micro of 0.80 and an F1-macro of 0.58. When considering the 263 full ICD codes, the KB-BERT was outperformed by all baseline models at an F1-micro and F1-macro of zero. Wilcoxon signed-rank tests showed that the performance differences between the KB-BERT and the baseline models were statistically significant.



References used
https://aclanthology.org/
rate research

Read More

The task of automatic diagnosis encoding into standard medical classifications and ontologies, is of great importance in medicine - both to support the daily tasks of physicians in the preparation and reporting of clinical documentation, and for auto matic processing of clinical reports. In this paper we investigate the application and performance of different deep learning transformers for automatic encoding in ICD-10 of clinical texts in Bulgarian. The comparative analysis attempts to find which approach is more efficient to be used for fine-tuning of pretrained BERT family transformer to deal with a specific domain terminology on a rare language as Bulgarian. On the one side are used SlavicBERT and MultiligualBERT, that are pretrained for common vocabulary in Bulgarian, but lack medical terminology. On the other hand in the analysis are used BioBERT, ClinicalBERT, SapBERT, BlueBERT, that are pretrained for medical terminology in English, but lack training for language models in Bulgarian, and more over for vocabulary in Cyrillic. In our research study all BERT models are fine-tuned with additional medical texts in Bulgarian and then applied to the classification task for encoding medical diagnoses in Bulgarian into ICD-10 codes. Big corpora of diagnosis in Bulgarian annotated with ICD-10 codes is used for the classification task. Such an analysis gives a good idea of which of the models would be suitable for tasks of a similar type and domain. The experiments and evaluation results show that both approaches have comparable accuracy.
In this paper, we propose a knowledge infusion mechanism to incorporate domain knowledge into language transformers. Weakly supervised data is regarded as the main source for knowledge acquisition. We pre-train the language models to capture masked k nowledge of focuses and aspects and then fine-tune them to obtain better performance on the downstream tasks. Due to the lack of publicly available datasets for multi-label classification of Chinese medical questions, we crawled questions from medical question/answer forums and manually annotated them using eight predefined classes: persons and organizations, symptom, cause, examination, disease, information, ingredient, and treatment. Finally, a total of 1,814 questions with 2,340 labels. Each question contains an average of 1.29 labels. We used Baidu Medical Encyclopedia as the knowledge resource. Two transformers BERT and RoBERTa were implemented to compare performance on our constructed datasets. Experimental results showed that our proposed model with knowledge infusion mechanism can achieve better performance, no matter which evaluation metric including Macro F1, Micro F1, Weighted F1 or Subset Accuracy were considered.
ICD-9 coding is a relevant clinical billing task, where unstructured texts with information about a patient's diagnosis and treatments are annotated with multiple ICD-9 codes. Automated ICD-9 coding is an active research field, where CNN- and RNN-bas ed model architectures represent the state-of-the-art approaches. In this work, we propose a description-based label attention classifier to improve the model explainability when dealing with noisy texts like clinical notes.
The mix-up method (Zhang et al., 2017), one of the methods for data augmentation, is known to be easy to implement and highly effective. Although the mix-up method is intended for image identification, it can also be applied to natural language proce ssing. In this paper, we attempt to apply the mix-up method to a document classification task using bidirectional encoder representations from transformers (BERT) (Devlin et al., 2018). Since BERT allows for two-sentence input, we concatenated word sequences from two documents with different labels and used the multi-class output as the supervised data with a one-hot vector. In an experiment using the livedoor news corpus, which is Japanese, we compared the accuracy of document classification using two methods for selecting documents to be concatenated with that of ordinary document classification. As a result, we found that the proposed method is better than the normal classification when the documents with labels shortages are mixed preferentially. This indicates that how to choose documents for mix-up has a significant impact on the results.
Given the clinical notes written in electronic health records (EHRs), it is challenging to predict the diagnostic codes which is formulated as a multi-label classification task. The large set of labels, the hierarchical dependency, and the imbalanced data make this prediction task extremely hard. Most existing work built a binary prediction for each label independently, ignoring the dependencies between labels. To address this problem, we propose a two-stage framework to improve automatic ICD coding by capturing the label correlation. Specifically, we train a label set distribution estimator to rescore the probability of each label set candidate generated by a base predictor. This paper is the first attempt at learning the label set distribution as a reranking module for ICD coding. In the experiments, our proposed framework is able to improve upon best-performing predictors for medical code prediction on the benchmark MIMIC datasets.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا