في الكتابة، تعتمد الفكاهة بشكل رئيسي على اللغة المجازية التي تغير الكلمات والتعبيرات المعنى التقليدي للإشارة إلى شيء ما دون قوله مباشرة.يمنع هذا الوجه بمعنى الكلمات معالجة اللغات الطبيعية من الكشف عن النية الحقيقية للاتصال، وبالتالي، يقلل من فعالية المهام مثل تحليل المعنويات أو الكشف عن المشاعر.في هذه المخطوطة، نصف أن نصف مشاركة UMUTEAM في HAHACHATHON 2021، والتي يكون هدفها هو اكتشاف ومعدل محتوى مضحك ومثير للجدل.يستند اقتراحنا إلى مزيج من الميزات اللغوية مع تضمين الكلمات السياقية وغير السياقية.نشارك في جميع المساحات الفرعية المقترحة التي تحققت نتيجة أفضل النتائج في الفكاهة المثيرة للجدل.
In writing, humor is mainly based on figurative language in which words and expressions change their conventional meaning to refer to something without saying it directly. This flip in the meaning of the words prevents Natural Language Processing from revealing the real intention of a communication and, therefore, reduces the effectiveness of tasks such as Sentiment Analysis or Emotion Detection. In this manuscript we describe the participation of the UMUTeam in HaHackathon 2021, whose objective is to detect and rate humorous and controversial content. Our proposal is based on the combination of linguistic features with contextual and non-contextual word embeddings. We participate in all the proposed subtasks achieving our best result in the controversial humor subtask.
References used
https://aclanthology.org/
This paper describes our contribution to SemEval-2021 Task 7: Detecting and Rating Humor and Of-fense.This task contains two sub-tasks, sub-task 1and sub-task 2. Among them, sub-task 1 containsthree sub-tasks, sub-task 1a ,sub-task 1b and sub-task 1c
This paper describes the winning system for SemEval-2021 Task 7: Detecting and Rating Humor and Offense. Our strategy is stacking diverse pre-trained language models (PLMs) such as RoBERTa and ALBERT. We first perform fine-tuning on these two PLMs wi
Humor recognition is a challenging task in natural language processing. This document presents my approaches to detect and rate humor and offense from the given text. This task includes 2 tasks: task 1 which contains 3 subtasks (1a, 1b, and 1c), and
This paper describes Humor-BERT, a set of BERT Large based models that we used in the SemEval-2021 Task 7: Detecting and Rating Humor and Offense. It presents pre and post processing techniques, variable threshold learning, meta learning and Ensemble
The HaHackathon: Detecting and Rating Humor and Offense'' task at the SemEval 2021 competition focuses on detecting and rating the humor level in sentences, as well as the level of offensiveness contained in these texts with humoristic tones. In this