Do you want to publish a course? Click here

The Online Pivot: Lessons Learned from Teaching a Text and Data Mining Course in Lockdown, Enhancing online Teaching with Pair Programming and Digital Badges

المحور الإلكتروني على الإنترنت: الدروس المستفادة من تدريس دورة نصية وتعدين البيانات في قفل، وتعزيز التدريس عبر الإنترنت مع برمجة الزوج والشارات الرقمية

295   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

In this paper we provide an account of how we ported a text and data mining course online in summer 2020 as a result of the COVID-19 pandemic and how we improved it in a second pilot run. We describe the course, how we adapted it over the two pilot runs and what teaching techniques we used to improve students' learning and community building online. We also provide information on the relentless feedback collected during the course which helped us to adapt our teaching from one session to the next and one pilot to the next. We discuss the lessons learned and promote the use of innovative teaching techniques applied to the digital such as digital badges and pair programming in break-out rooms for teaching Natural Language Processing courses to beginners and students with different backgrounds.



References used
https://aclanthology.org/
rate research

Read More

The ongoing COVID-19 pandemic has brought online education to the forefront of pedagogical discussions. To make this increased interest sustainable in a post-pandemic era, online courses must be built on strong pedagogical foundations. With a long hi story of pedagogic research, there are many principles, frameworks, and models available to help teachers in doing so. These models cover different teaching perspectives, such as constructive alignment, feedback, and the learning environment. In this paper, we discuss how we designed and implemented our online Natural Language Processing (NLP) course following constructive alignment and adhering to the pedagogical principles of LTU. By examining our course and analyzing student evaluation forms, we show that we have met our goal and successfully delivered the course. Furthermore, we discuss the additional benefits resulting from the current mode of delivery, including the increased reusability of course content and increased potential for collaboration between universities. Lastly, we also discuss where we can and will further improve the current course design.
In this paper we present a new Massive Open Online Course on Natural Language Processing, targeted at non-English speaking students. The course lasts 12 weeks, every week consists of lectures, practical sessions and quiz assigments. Three weeks out o f 12 are followed by Kaggle-style coding assigments. Our course intents to serve multiple purposes: (i) familirize students with the core concepts and methods in NLP, such as language modelling or word or sentence representations, (ii) show that recent advances, including pre-trained Transformer-based models, are build upon these concepts; (iii) to introduce architectures for most most demanded real-life applications, (iii) to develop practical skills to process texts in multiple languages. The course was prepared and recorded during 2020 and so far have received positive feedback.
Cross-document event coreference resolution (CDCR) is the task of identifying which event mentions refer to the same events throughout a collection of documents. Annotating CDCR data is an arduous and expensive process, explaining why existing corpor a are small and lack domain coverage. To overcome this bottleneck, we automatically extract event coreference data from hyperlinks in online news: When referring to a significant real-world event, writers often add a hyperlink to another article covering this event. We demonstrate that collecting hyperlinks which point to the same article(s) produces extensive and high-quality CDCR data and create a corpus of 2M documents and 2.7M silver-standard event mentions called HyperCoref. We evaluate a state-of-the-art system on three CDCR corpora and find that models trained on small subsets of HyperCoref are highly competitive, with performance similar to models trained on gold-standard data. With our work, we free CDCR research from depending on costly human-annotated training data and open up possibilities for research beyond English CDCR, as our data extraction approach can be easily adapted to other languages.
Only a small portion of research papers with human evaluation for text summarization provide information about the participant demographics, task design, and experiment protocol. Additionally, many researchers use human evaluation as gold standard wi thout questioning the reliability or investigating the factors that might affect the reliability of the human evaluation. As a result, there is a lack of best practices for reliable human summarization evaluation grounded by empirical evidence. To investigate human evaluation reliability, we conduct a series of human evaluation experiments, provide an overview of participant demographics, task design, experimental set-up and compare the results from different experiments. Based on our empirical analysis, we provide guidelines to ensure the reliability of expert and non-expert evaluations, and we determine the factors that might affect the reliability of the human evaluation.
Many modern messaging systems allow fast and synchronous textual communication among many users. The resulting sequence of messages hides a more complicated structure in which independent sub-conversations are interwoven with one another. This poses a challenge for any task aiming to understand the content of the chat logs or gather information from them. The ability to disentangle these conversations is then tantamount to the success of many downstream tasks such as summarization and question answering. Structured information accompanying the text such as user turn, user mentions, timestamps, is used as a cue by the participants themselves who need to follow the conversation and has been shown to be important for disentanglement. DAG-LSTMs, a generalization of Tree-LSTMs that can handle directed acyclic dependencies, are a natural way to incorporate such information and its non-sequential nature. In this paper, we apply DAG-LSTMs to the conversation disentanglement task. We perform our experiments on the Ubuntu IRC dataset. We show that the novel model we propose achieves state of the art status on the task of recovering reply-to relations and it is competitive on other disentanglement metrics.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا