Do you want to publish a course? Click here

Testing Bells inequality using Aharonov-Casher effect

128   0   0.0 ( 0 )
 Publication date 1998
  fields Physics
and research's language is English




Ask ChatGPT about the research

We propose the Aharonov-Casher (AC) effect for four entangled spin-half particles carrying magnetic moments in the presence of impenetrable line charge. The four particle state undergoes AC phase shift in two causually disconnected region which can show up in the correlations between different spin states of distant particles. This correlation can violate Bells inequality, thus displaying the non-locality for four particle entangled states in an objective way. Also, we have suggested how to control the AC phase shift locally at two distant locations to test Bells inequality. We belive that although the single particle AC effect may not be non-local but the entangled state AC effect is a non-local one.

rate research

Read More

In this work bound states for the Aharonov-Casher problem are considered. According to Hagens work on the exact equivalence between spin-1/2 Aharonov-Bohm and Aharonov-Casher effects, is known that the $boldsymbol{ abla}cdotmathbf{E}$ term cannot be neglected in the Hamiltonian if the spin of particle is considered. This term leads to the existence of a singular potential at the origin. By modeling the problem by boundary conditions at the origin which arises by the self-adjoint extension of the Hamiltonian, we derive for the first time an expression for the bound state energy of the Aharonov-Casher problem. As an application, we consider the Aharonov-Casher plus a two-dimensional harmonic oscillator. We derive the expression for the harmonic oscillator energies and compare it with the expression obtained in the case without singularity. At the end, an approach for determination of the self-adjoint extension parameter is given. In our approach, the parameter is obtained essentially in terms of physics of the problem.
We analyze a possibility of using the two qubit output state from Buzek-Hillery quantum copying machine (not necessarily universal quantum cloning machine) as a teleportation channel. We show that there is a range of values of the machine parameter $xi$ for which the two qubit output state is entangled and violates Bell-CHSH inequality and for a different range it remains entangled but does not violate Bell-CHSH inequality. Further we observe that for certain values of the machine parameter the two-qubit mixed state can be used as a teleportation channel. The use of the output state from the Buzek-Hillery cloning machine as a teleportation channel provides an additional appeal to the cloning machine and motivation of our present work.
85 - Arun Kumar Pati 1998
We derive a Bell-like inequality involving all correlations in local observables with uncertainty free states and show that the inequality is violated in quantum mechanics for EPR and GHZ states. If the uncertainties are allowed in local observables then the statistical predictions of hidden variable theory is well respected in quantum world. We argue that the uncertainties play a key role in understanding the non-locality issues in quantum world. Thus we can not rule out the possibility that a local, realistic hidden variable theory with statistical uncertainties in the observables might reproduce all the results of quantum theory.
We propose an experiment that would produce and measure a large Aharonov-Casher (A-C) phase in a solid-state system under macroscopic motion. A diamond crystal is mounted on a spinning disk in the presence of a uniform electric field. Internal magnetic states of a single NV defect, replacing interferometer trajectories, are coherently controlled by microwave pulses. The A-C phase shift is manifested as a relative phase, of up to 17 radians, between components of a superposition of magnetic substates, which is two orders of magnitude larger than that measured in any other atom-scale quantum system.
Recent proposals to test Bells inequalities with entangled pairs of pseudoscalar mesons are reviewed. This includes pairs of neutral kaons or B-mesons and offers some hope to close both the locality and the detection loopholes. Specific difficulties, however, appear thus invalidating most of those proposals. The best option requires the use of kaon regeneration effects and could lead to a successful test if moderate kaon detection efficiencies are achieved.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا