Collective interaction of light with an atomic gas can give rise to superradiant instabilities. We experimentally study the sudden build-up of a reverse light field in a laser-driven high-finesse ring cavity filled with ultracold thermal or condensed atoms. While superradiant Rayleigh scattering from atomic clouds is normally only observed at very low temperatures (i.e. well below $1 mu$K), the presence of the ring cavity enhances cooperativity and allows for superradiance with thermal clouds as hot as several $10 mu$K. A characterization of the superradiance at various temperatures and cooperativity parameters allows us to link it to the collective atomic recoil laser.
We achieve the strong coupling regime between an ensemble of phosphorus donor spins in a highly enriched $^{28}$Si crystal and a 3D dielectric resonator. Spins were polarized beyond Boltzmann equilibrium using spin selective optical excitation of the no-phonon bound exciton transition resulting in $N$ = $3.6cdot10^{13}$ unpaired spins in the ensemble. We observed a normal mode splitting of the spin ensemble-cavity polariton resonances of 2$gsqrt{N}$ = 580 kHz (where each spin is coupled with strength $g$) in a cavity with a quality factor of 75,000 ($gamma ll kappa approx$ 60 kHz where $gamma$ and $kappa$ are the spin dephasing and cavity loss rates, respectively). The spin ensemble has a long dephasing time (T$_2^*$ = 9 $mu$s) providing a wide window for viewing the dynamics of the coupled spin ensemble-cavity system. The free induction decay shows up to a dozen collapses and revivals revealing a coherent exchange of excitations between the superradiant state of the spin ensemble and the cavity at the rate $gsqrt{N}$. The ensemble is found to evolve as a single large pseudospin according to the Tavis-Cummings model due to minimal inhomogeneous broadening and uniform spin-cavity coupling. We demonstrate independent control of the total spin and the initial Z-projection of the psuedospin using optical excitation and microwave manipulation respectively. We vary the microwave excitation power to rotate the pseudospin on the Bloch sphere and observe a long delay in the onset of the superradiant emission as the pseudospin approaches full inversion. This delay is accompanied by an abrupt $pi$ phase shift in the peusdospin microwave emission. The scaling of this delay with the initial angle and the sudden phase shift are explained by the Tavis-Cummings model.
We investigate the collective decay dynamics of atoms with a generic multilevel structure (angular momenta $Fleftrightarrow F$) coupled to two light modes of different polarization inside a cavity. In contrast to two-level atoms, we find that multilevel atoms can harbour eigenstates that are perfectly dark to cavity decay even within the subspace of permutationally symmetric states (collective Dicke manifold). The dark states arise from destructive interference between different internal transitions and are shown to be entangled. Remarkably, the superradiant decay of multilevel atoms can end up stuck in one of these dark states, where a macroscopic fraction of the atoms remains excited. This opens the door to the preparation of entangled dark states of matter through collective dissipation useful for quantum sensing and quantum simulation. Our predictions should be readily observable in current optical cavity experiments with alkaline-earth atoms or Raman-dressed transitions.
We propose a novel type of composite light-matter interferometer based on a supersolid-like phase of a driven Bose-Einstein condensate coupled to a pair of degenerate counterpropagating electromagnetic modes of an optical ring cavity. The supersolid-like condensate under the influence of the gravity drags the cavity optical potential with itself, thereby changing the relative phase of the two {cavity electromagnetic fields}. Monitoring the phase evolution of the cavity output fields thus allows for a nondestructive measurement of the gravitational acceleration. We show that the sensitivity of the proposed gravimeter exhibits Heisenberg-like scaling with respect to the atom number. As the relative phase of the cavity fields is insensitive to photon losses, the gravimeter is robust against these deleterious effects. For state-of-the-art experimental parameters, the relative sensitivity $Delta g/g$ of such a gravimeter could be of the order of $10^{-10}$--$10^{-8}$ for a condensate of a half a million atoms and interrogation time of the order of a few seconds.
We theoretically analyze the collective dynamics of a thermal beam of atomic dipoles that couple to a single mode when traversing an optical cavity. For this setup we derive a semiclassical model and determine the onset of superradiant emission and its stability. We derive analytical expressions for the linewidth of the emitted light and compare them with numerical simulations. In addition, we find and predict two different superradiant phases; a steady-state superradiant phase and a multi-component superradiant phase. In the latter case we observe sidebands in the frequency spectrum that can be calculated using a stability analysis of the amplitude mode of the collective dipole. We show that both superradiant phases are robust against free-space spontaneous emission and $T_2$ dephasing processes.
We develop a quantum theory of atomic Rayleigh scattering. Scattering is considered as a relaxation of incident photons from a selected mode of free space to the reservoir of the other free space modes. Additional excitations of the reservoir states which appear are treated as scattered light. We show that an entangled state of the excited atom and the incident photon is formed during the scattering. Due to entanglement, a photon is never completely absorbed by the atom. We show that even if the selected mode frequency is incommensurable with any atomic transition frequency, the scattered light spectrum has a maximum at the frequency of the selected mode. The linewidth of scattered light is much smaller than that of the spontaneous emission of a single atom, therefore, the process can be considered as elastic. The developed theory does not use the phenomenological concept of virtual level.