We present a theoretical and experimental study of a photonic crystal based optical system in terms of weak values that map polarization states onto longitudinal spatial position and show fast and slow light behavior.
The exact conditions on valid pointer states for weak measurements are derived. It is demonstrated that weak measurements can be performed with any pointer state with vanishing probability current density. This condition is found both for weak measurements of noncommuting observables and for $c$-number observables. In addition, the interaction between pointer and object must be sufficiently weak. There is no restriction on the purity of the pointer state. For example, a thermal pointer state is fully valid.
We study the spontaneous emission, the absorption and dispersion properties of a ${bf Lambda}$-type atom where one transition interacts near resonantly with a double-band photonic crystal. Assuming an isotropic dispersion relation near the band edges, we show that two distinct coherent phenomena can occur. First, the spontaneous emission spectrum of the adjacent free space transition obtains `dark lines (zeroes in the spectrum). Second, the atom can become transparent to a probe laser field coupling to the adjacent free space transition.
This paper gives an overview of recent work on three-dimensional (3D) photonic crystals with a full and complete 3D photonic band gap. We review five main aspects: 1) spontaneous emission inhibition, 2) spatial localization of light within a tiny nanoscale volume (aka a nanobox for light), 3) the introduction of a gain medium leading to thresholdless lasers, 4) breaking of the weak-coupling approximation of cavity QED, both in the frequency and in the time-domain, 5) decoherence, in particular the shielding of vacuum fluctuations by a 3D photonic bandgap. In addition, we list and evaluate all known photonic crystal structures with a demonstrated 3D band gap.
I propose a scheme for reconstructing the weak value of an observable without the need for weak measurements. The post-selection in weak measurements is replaced by an initial projector measurement. The observable can be measured using any form of interaction, including projective measurements. The reconstruction is effected by measuring the change in the expectation value of the observable due to the projector measurement. The weak value may take nonclassical values if the projector measurement disturbs the expectation value of the observable.
We obtain a general result for the Lamb shift of excited states of multi-level atoms in inhomogeneous electromagnetic structures and apply it to study atomic hydrogen in inverse-opal photonic crystals. We find that the photonic-crystal environment can lead to very large values of the Lamb shift, as compared to the case of vacuum. We also predict that the position-dependent Lamb shift should extend from a single level to a mini-band for an assemble of atoms with random distribution in space, similar to the velocity-dependent Doppler effect in atomic/molecular gases.