Do you want to publish a course? Click here

Bounds and enhancements for the Hartman effect

72   0   0.0 ( 0 )
 Added by Inigo L. Egusquiza
 Publication date 2002
  fields Physics
and research's language is English




Ask ChatGPT about the research

The time of passage of the transmitted wave packet in a tunneling collision of a quantum particle with a square potential barrier becomes independent of the barrier width in a range of barrier thickness. This is the Hartman effect, which has been frequently associated with ``superluminality. A fundamental limitation on the effect is set by non-relativistic ``causality conditions. We demonstrate first that the causality conditions impose more restrictive bounds on the negative time delays (time advancements) when no bound states are present. These restrictive bounds are in agreement with a naive, and generally false, causality argument based on the positivity of the ``extrapolated phase time, one of the quantities proposed to characterize the duration of the barriers traversal. Nevertheless, square wells may in fact lead to much larger advancements than square barriers. We point out that close to thresholds of new bound states the time advancement increases considerably, while, at the same time, the transmission probability is large, which facilitates the possible observation of the enhanced time advancement.



rate research

Read More

In a recent review paper [{em Phys. Reports} {bf 214} (1992) 339] we proposed, within conventional quantum mechanics, new definitions for the sub-barrier tunnelling and reflection times. Aims of the present paper are: (i) presenting and analysing the results of various numerical calculations (based on our equations) on the penetration and return times $<tau_{, rm Pen}>$, $<tau_{, rm Ret}>$, during tunnelling {em inside} a rectangular potential barrier, for various penetration depths $x_{rm f}$; (ii) putting forth and discussing suitable definitions, besides of the mean values, also of the {em variances} (or dispersions) ${rm D} , {tau_{rm T}}$ and ${rm D} , {tau_{, rm R}}$ for the time durations of transmission and reflection processes; (iii) mentioning, moreover, that our definition $<tau_{rm T}>$ for the average transmission time results to constitute an {em improvement} of the ordinary dwell--time ${ove tau}^{rm Dw}$ formula: (iv) commenting, at last, on the basis of our {em new} numerical results, upon some recent criticism by C.R.Leavens. We stress that our numerical evaluations {em confirm} that our approach implied, and implies, the existence of the {em Hartman effect}: an effect that in these days (due to the theoretical connections between tunnelling and evanescent--wave propagation) is receiving ---at Cologne, Berkeley, Florence and Vienna--- indirect, but quite interesting, experimental verifications. Eventually, we briefly analyze some other definitions of tunnelling times.
The performances of quantum thermometry in thermal equilibrium together with the output power of certain class of quantum engines share a common characteristic: both are determined by the heat capacity of the probe or working medium. After noticing that the heat capacity of spin ensembles can be significantly modified by collective coupling with a thermal bath, we build on the above observation to investigate the respective impact of such collective effect on quantum thermometry and quantum engines. We find that the precision of the temperature estimation is largely increased at high temperatures, reaching even the Heisenberg scaling - inversely proportional to the number of spins. For Otto engines operating close to the Carnot efficiency, collective coupling always enhances the output power. Some tangible experimental platforms are suggested.
71 - Dan Pirjol 2020
The Hartman-Watson distribution with density $f_r(t)$ is a probability distribution defined on $t geq 0$ which appears in several problems of applied probability. The density of this distribution is expressed in terms of an integral $theta(r,t)$ which is difficult to evaluate numerically for small $tto 0$. Using saddle point methods, we obtain the first two terms of the $tto 0$ expansion of $theta(rho/t,t)$ at fixed $rho >0$. An error bound is obtained by numerical estimates of the integrand, which is furthermore uniform in $rho$. As an application we obtain the leading asymptotics of the density of the time average of the geometric Brownian motion as $tto 0$. This has the form $mathbb{P}(frac{1}{t} int_0^t e^{2(B_s+mu s)} ds in da) = (2pi t)^{-1/2} g(a,mu) e^{-frac{1}{t} J(a)} (1 + O(t))$, with an exponent $J(a)$ which reproduces the known result obtained previously using Large Deviations theory.
It is well-known that the nonlinear coupling between a mechanical oscillator and a superconducting oscillator or optical cavity can be used to generate a Kerr-nonlinearity for the cavity mode. We show that the strength of this Kerr-nonlinearity, as well as the effect of the photon-pressure force can be enormously increased by modulating the strength of the nonlinear coupling. We present an electromechanical circuit in which this enhancement can be readily realized.
104 - Srijon Ghosh , Aditi Sen De 2021
Power storage devices are shown to increase their efficiency if they are designed by using quantum systems. We show that the average power output of a quantum battery based on a quantum interacting spin model, charged via a local magnetic field, can be enhanced with the increase of spin quantum number. In particular, we demonstrate such increment in the power output when the initial state of the battery is prepared as the ground or canonical equilibrium state of the spin-j XY model and the bilinear-biquadratic spin-j Heisenberg chain (BBH) in presence of the transverse magnetic field. Interestingly, we observe that in the case of the XY model, a trade-off relation exists between the range of interactions in which the power increases and the dimension while for the BBH model, the improvements depend on the phase in which the initial state is prepared. Moreover, we exhibit that such dimensional advantages persist even when the battery-Hamiltonian has some defects or when the initial battery-state is prepared at finite temperature.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا