No Arabic abstract
In the field of atom optics, the basis of many experiments is a two level atom coupled to a light field. The evolution of this system is governed by a master equation. The irreversible components of this master equation describe the spontaneous emission of photons from the atom. For many applications, it is necessary to minimize the effect of this irreversible evolution. This can be achieved by having a far detuned light field. The drawback of this regime is that making the detuning very large makes the timestep required to solve the master equation very small, much smaller than the timescale of any significant evolution. This makes the problem very numerically intensive. For this reason, approximations are used to simulate the master equation which are more numerically tractable to solve. This paper analyses four approximations: The standard adiabatic approximation; a more sophisticated adiabatic approximation (not used before); a secular approximation; and a fully quantum dressed-state approximation. The advantages and disadvantages of each are investigated with respect to accuracy, complexity and the resources required to simulate. In a parameter regime of particular experimental interest, only the sophisticated adiabatic and dressed-state approximations agree well with the exact evolution.
We study approximate cloaking using transformation optics for electromagnetic waves in the time domain. Our approach is based on estimates of the degree of visibility in the frequency domain for all frequencies in which the frequency dependence is explicit. The difficulty and the novelty analysis parts are in the low and high frequency regimes. To this end, we implement a variational technique in the low frequency domain, and multiplier and duality techniques in the high frequency domain. Our approach is inspired by the work of Nguyen and Vogelius on the wave equation.
We give a comprehensive overview of the development of micro traps, from the first experiments on guiding atoms using current carrying wires in the early 1990s to the creation of a BEC on an atom chip.
Local master equations are a widespread tool to model open quantum systems, especially in the context of many-body systems. These equations, however, are believed to lead to thermodynamic anomalies and violation of the laws of thermodynamics. In contrast, here we rigorously prove that local master equations are consistent with thermodynamics and its laws without resorting to a microscopic model, as done in previous works. In particular, we consider a quantum system in contact with multiple baths and identify the relevant contributions to the total energy, heat currents and entropy production rate. We show that the second law of thermodynamics holds when one considers the proper expression we derive for the heat currents. We confirm the results for the quantum heat currents by using a heuristic argument that connects the quantum probability currents with the energy currents, using an analogous approach as in classical stochastic thermodynamics. We finally use our results to investigate the thermodynamic properties of a set of quantum rotors operating as thermal devices and show that a suitable design of three rotors can work as an absorption refrigerator or a thermal rectifier. For the machines considered here, we also perform an optimisation of the system parameters using an algorithm of reinforcement learning.
The interaction between matter and squeezed light has mostly been treated within the approximation that the field correlation time is small. Methods for treating squeezed light with more general correlations currently involve explicitly modeling the systems producing the light. We develop a general purpose input-output theory for a particular form of narrowband squeezed light -- a squeezed wave-packet mode -- that only cares about the statistics of the squeezed field and the shape of the wave packet. This formalism allows us to derive the input-output relations and the master equation. We also consider detecting the scattered field using photon counting and homodyne measurements which necessitates the derivation of the stochastic master equation. The non Markovian nature of the field manifests itself in the master equation as a coupled hierarchy of equations. We illustrate these with consequences for the decay and resonance fluorescence of two-level atoms in the presence of such fields.
Complete characterization of complete positivity preserving non-Markovian master equations is presented.