Do you want to publish a course? Click here

The speed of quantum information and the preferred frame: analysis of experimental data

98   0   0.0 ( 0 )
 Added by Wolfgang Tittel
 Publication date 2000
  fields Physics
and research's language is English




Ask ChatGPT about the research

The results of EPR experiments performed in Geneva are analyzed in the frame of the cosmic microwave background radiation, generally considered as a good candidate for playing the role of preferred frame. We set a lower bound for the speed of quantum information in this frame at 1.5 x 10^4 c.



rate research

Read More

125 - N. A. Khan , M. Jan 2020
We investigate the roles of the relativistic effect on the speed of evolution of a quantum system coupled with amplitude damping channels. We find that the relativistic effect speed-up the quantum evolution to a uniform evolution speed of open quantum systems for the damping parameter $p_{tau}lesssim p_{tau_{c0}}.$ Moreover, we point out a non-monotonic behavior of the quantum speed limit time (QSLT) with acceleration in the damping limit $p_{tau_{c0}}lesssim p_{tau}lesssim p_{tau_{c1}},$ where the relativistic effect first speed-up and then slow down the quantum evolution process of the damped system. For the damping strength $p_{tau_{c1}}lesssim p_{tau}$, we observe a monotonic increasing behavior of QSLT, leads to slow down the quantum evolution of the damped system. In addition, we examine the roles of the relativistic effect on the speed limit time for a system coupled with the phase damping channels.
One of the milestones of quantum mechanics is Bohrs complementarity principle. It states that a single quantum can exhibit a particle-like emph{or} a wave-like behaviour, but never both at the same time. These are mutually exclusive and complementary aspects of the quantum system. This means that we need distinct experimental arrangements in order to measure the particle or the wave nature of a physical system. One of the most known representations of this principle is the single-photon Mach-Zehnder interferometer. When the interferometer is closed an interference pattern is observed (wave aspect of the quantum) while if it is open, the quantum behaves like a particle. Here, using a molecular quantum information processor and employing nuclear magnetic resonant (NMR) techniques, we analyze the quantum version of this principle by means of an interferometer that is in a quantum superposition of being closed and open, and confirm that we can indeed measure both aspects of the system with the same experimental apparatus. More specifically, we observe with a single apparatus the interference between the particle and the wave aspects of a quantum system.
We analyze circuits for a number of kernels from popular quantum computing applications, characterizing the hardware resources necessary to take ancilla preparation off the critical path. The result is a chip entirely dominated by ancilla generation circuits. To address this issue, we introduce optimized ancilla factories and analyze their structure and physical layout for ion trap technology. We introduce a new quantum computing architecture with highly concentrated data-only regions surrounded by shared ancilla factories. The results are a reduced dependence on costly teleportation, more efficient distribution of generated ancillae and more than five times speedup over previous proposals.
The quantum Fisher information (QFI) represents a fundamental concept in quantum physics. On the one hand, it quantifies the metrological potential of quantum states in quantum-parameter-estimation measurements. On the other hand, it is intrinsically related to the quantum geometry and multipartite entanglement of many-body systems. Here, we explore how the QFI can be estimated via randomized measurements, an approach which has the advantage of being applicable to both pure and mixed quantum states. In the latter case, our method gives access to the sub-quantum Fisher information, which sets a lower bound on the QFI. We experimentally validate this approach using two platforms: a nitrogen-vacancy center spin in diamond and a 4-qubit state provided by a superconducting quantum computer. We further perform a numerical study on a many-body spin system to illustrate the advantage of our randomized-measurement approach in estimating multipartite entanglement, as compared to quantum state tomography. Our results highlight the general applicability of our method to general quantum platforms, including solid-state spin systems, superconducting quantum computers and trapped ions, hence providing a versatile tool to explore the essential role of the QFI in quantum physics.
We present an experimental realization of a robust quantum communication scheme [Phys. Rev. Lett. 93, 220501 (2004)] using pairs of photons entangled in polarization and time. Our method overcomes errors due to collective rotation of the polarization modes (e.g., birefringence in optical fiber or misalignment), is insensitive to the phases fluctuation of the interferometer, and does not require any shared reference frame including time reference, except the need to label different photons. The practical robustness of the scheme is further shown by implementing a variation of the Bennett-Brassard 1984 quantum key distribution protocol over 1 km optical fiber.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا