Do you want to publish a course? Click here

Complete Numerical Solution of the Temkin-Poet Three-Body Problem

76   0   0.0 ( 0 )
 Added by Stephen Louis Jones
 Publication date 1999
  fields Physics
and research's language is English




Ask ChatGPT about the research

Although the convergent close-coupling (CCC) method has achieved unprecedented success in obtaining accurate theoretical cross sections for electron-atom scattering, it generally fails to yield converged energy distributions for ionization. Here we report converged energy distributions for ionization of H(1s) by numerically integrating Schroedingers equation subject to correct asymptotic boundary conditions for the Temkin-Poet model collision problem, which neglects angular momentum. Moreover, since the present method is complete, we obtained convergence for all transitions in a single calculation. Complete results, accurate to 1%, are presented for impact energies of 54.4 and 40.8 eV, where CCC results are available for comparison.



rate research

Read More

301 - Z. Papp 1997
Based on a three-potential formalism we propose mathematically well-behaved Faddeev-type integral equations for the atomic three-body problem and descibe their solutions in Coulomb-Sturmian space representation. Although the system contains only long-range Coulomb interactions these equations allow us to reach solution by approximating only some auxiliary short-range type potentials. We outline the method for bound states and demonstrate its power in benchmark calculations. We can report a fast convergence in angular momentum channels.
The study of scattering processes in few body systems is a difficult problem especially if long range interactions are involved. In order to solve such problems, we develop here a potential-splitting approach for three body systems. This approach is based on splitting the reaction potential into a finite range core part and a long range tail part. The solution to the Schrodinger equation for the long range tail Hamiltonian is found analytically, and used as an incoming wave in the three body scattering problem. This reformulation of the scattering problem makes it suitable for treatment by the exterior complex scaling technique in the sense that the problem after the complex dilation is reduced to a boundary value problem with zero boundary conditions. We illustrate the method with calculations on the electron scattering off the hydrogen atom and the positive helium ion in the frame of the Temkin-Poet model.
A numerical approach to the problem of wave scattering by many small particles is developed under the assumptions k<<1, d>>a, where a is the size of the particles and d is the distance between the neighboring particles. On the wavelength one may have many small particles. An impedance boundary conditions are assumed on the boundaries of small particles. The results of numerical simulation show good agreement with the theory. They open a way to numerical simulation of the method for creating materials with a desired refraction coefficient.
A three-body scattering process in the presence of Coulomb interaction can be decomposed formally into a two-body single channel, a two-body multichannel and a genuine three-body scattering. The corresponding integral equations are coupled Lippmann-Schwinger and Faddeev-Merkuriev integral equations. We solve them by applying the Coulomb-Sturmian separable expansion method. We present elastic scattering and reaction cross sections of the $e^++H$ system both below and above the $H(n=2)$ threshold. We found excellent agreements with previous calculations in most cases.
78 - Z. Papp , J. Darai , C-.Y. Hu 2001
A novel method for calculating resonances in three-body Coulombic systems is proposed. The Faddeev-Merkuriev integral equations are solved by applying the Coulomb-Sturmian separable expansion method. The $e^- e^+ e^-$ S-state resonances up to $n=5$ threshold are calculated.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا