Do you want to publish a course? Click here

The effect of bandwidth in scale-free network traffic

202   0   0.0 ( 0 )
 Added by Mao-Bin Hu
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

We model information traffic on scale-free networks by introducing the bandwidth as the delivering ability of links. We focus on the effects of bandwidth on the packet delivering ability of the traffic system to better understand traffic dynamic in real network systems. Such ability can be measured by a phase transition from free flow to congestion. Two cases of node capacity C are considered, i.e., C=constant and C is proportional to the nodes degree. We figured out the decrease of the handling ability of the system together with the movement of the optimal local routing coefficient $alpha_c$, induced by the restriction of bandwidth. Interestingly, for low bandwidth, the same optimal value of $alpha_c$ emerges for both cases of node capacity. We investigate the number of packets of each node in the free flow state and provide analytical explanations for the optimal value of $alpha_c$. Average packets traveling time is also studied. Our study may be useful for evaluating the overall efficiency of networked traffic systems, and for allevating traffic jam in such systems.



rate research

Read More

This letter propose a new model for characterizing traffic dynamics in scale-free networks. With a replotted road map of cities with roads mapped to vertices and intersections to edges, and introducing the road capacity L and its handling ability at intersections C, the model can be applied to urban traffic system. Simulations give the overall capacity of the traffic system which is quantified by a phase transition from free flow to congestion. Moreover, we report the fundamental diagram of flow against density, in which hysteresis is found, indicating that the system is bistable in a certain range of vehicle density. In addition, the fundamental diagram is significantly different from single-lane traffic model and 2-D BML model with four states: free flow, saturated flow, bistable and jammed.
274 - S. Meloni , A. Arenas , Y. Moreno 2009
The study of complex networks sheds light on the relation between the structure and function of complex systems. One remarkable result is the absence of an epidemic threshold in infinite-size scale-free networks, which implies that any infection will perpetually propagate regardless of the spreading rate. The vast majority of current theoretical approaches assumes that infections are transmitted as a reaction process from nodes to all neighbors. Here we adopt a different perspective and show that the epidemic incidence is shaped by traffic flow conditions. Specifically, we consider the scenario in which epidemic pathways are defined and driven by flows. Through extensive numerical simulations and theoretical predictions, it is shown that the value of the epidemic threshold in scale-free networks depends directly on flow conditions, in particular on the first and second moments of the betweenness distribution given a routing protocol. We consider the scenarios in which the delivery capability of the nodes is bounded or unbounded. In both cases, the threshold values depend on the traffic and decrease as flow increases. Bounded delivery provokes the emergence of congestion, slowing down the spreading of the disease and setting a limit for the epidemic incidence. Our results provide a general conceptual framework to understand spreading processes on complex networks.
We model information traffic on scale-free networks by introducing the node queue length L proportional to the node degree and its delivering ability C proportional to L. The simulation gives the overall capacity of the traffic system, which is quantified by a phase transition from free flow to congestion. It is found that the maximal capacity of the system results from the case of the local routing coefficient phi slightly larger than zero, and we provide an analysis for the optimal value of phi. In addition, we report for the first time the fundamental diagram of flow against density, in which hysteresis is found, and thus we can classify the traffic flow with four states: free flow, saturated flow, bistable, and jammed.
A vast variety of real-life networks display the ubiquitous presence of scale-free phenomenon and small-world effect, both of which play a significant role in the dynamical processes running on networks. Although various dynamical processes have been investigated in scale-free small-world networks, analytical research about random walks on such networks is much less. In this paper, we will study analytically the scaling of the mean first-passage time (MFPT) for random walks on scale-free small-world networks. To this end, we first map the classical Koch fractal to a network, called Koch network. According to this proposed mapping, we present an iterative algorithm for generating the Koch network, based on which we derive closed-form expressions for the relevant topological features, such as degree distribution, clustering coefficient, average path length, and degree correlations. The obtained solutions show that the Koch network exhibits scale-free behavior and small-world effect. Then, we investigate the standard random walks and trapping issue on the Koch network. Through the recurrence relations derived from the structure of the Koch network, we obtain the exact scaling for the MFPT. We show that in the infinite network order limit, the MFPT grows linearly with the number of all nodes in the network. The obtained analytical results are corroborated by direct extensive numerical calculations. In addition, we also determine the scaling efficiency exponents characterizing random walks on the Koch network.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا